between dimethylamine and 1. The weakly interacting acyclic
secondary amines therefore exert unbiased influences over the
three amide protons b–d. Interestingly, a slightly different
trend was observed for cyclic secondary amines where proton
c becomes the most broadened and starts disappearing in the
presence of four equivalents of amine guests while the NMR
peaks for protons b and d are altered by both acyclic and
cyclic secondary amines almost to equal extents (Fig. 2c and
Fig. S13–S15, ESIw). Computationally, the cyclic secondary
amine (i.e. piperidine, Fig. 3c) interacts almost perpendicularly
with 1. The amine NH proton in piperidine forms a strong
Financial support to H.Z. by National Research Foundation
Competitive Research Programme Grant (R-154-000-529-281),
NUS AcRF Tier 1 grant (R-143-000-419-646) and Environment
and Water Industry Development Council and Economic
Development Board (SPORE, COY-15-EWI-RCFSA/N197-1)
is gratefully acknowledged.
Notes and references
1
S. Khademi, J. O’Connell, III, J. Remis, Y. Robles-Colmenares,
L. J. W. Miercke and R. M. Stroud, Science, 2004, 305, 1587.
(a) P. L. McGrier, K. M. Solntsev, J. Schonhaber, S. M. Brombosz,
L. M. Tolbert and U. H. F. Bunz, Chem. Commun., 2007, 2127;
(b) M. R. Ajayakumar and P. Mukhopadhyay, Chem. Commun.,
2
˚
H-bond of 2.14 A with the ester O-atom of 1 and a weak
˚
H-bond of 2.88 A with the pyridine N-atom of 1. On average,
2009, 3702; (c) C.-F. Chow, H.-K. Kong, S.-W. Leung, B. K. W.
Chiu, C.-K. Koo, E. N. Y. Lei, M. H. W. Lam, W.-T. Wong and
W.-Y. Wong, Anal. Chem., 2010, 83, 289; (d) S. M. A. Pinto,
M. A. O. Lourenc¸ o, M. J. F. Calvete, A. R. Abreu, M. T. S. Rosado,
the protons from the ring atoms of piperidine are closer to
˚
˚
amide protons b and c (B2.6 A) than to proton d (>3.3 A).
These electrostatic interactions among the protons may modify
the electron density around protons b and c, possibly resulting
H. D. Burrows and M. M. Pereira, Inorg. Chem., 2011, 50, 7916;
(e) C. G. Sun, Q. Lin and N. Y. Fu, Chin. Chem. Lett., 2012, 23, 217.
(a) W.-L. Gong, K. J. Sears, J. E. Alleman and E. R. Blatchley III,
Environ. Toxicol. Chem., 2004, 23, 239; (b) Y. Takagai, Y. Nojiri,
T. Takase, W. L. Hinze, M. Butsugan and S. Igarashi, Analyst,
1
in the observed titration pattern of H NMR peaks where the
3
4
amide protons b and c are affected more than proton d by cyclic
secondary amines (Fig. 2c).
2
010, 135, 1417.
For reviews on foldamers, see: (a) S. H. Gellman, Acc. Chem. Res.,
998, 31, 173; (b) I. Huc, Eur. J. Org. Chem., 2004, 17; (c) B. Gong, Acc.
Lastly, the addition of ammonium ions into 1 leads to line
1
broadenings and a rapid decrease in the size of H NMR peaks
1
for all the three amide protons (Fig. 2f and g and Fig. S20
and S21, ESIw). Unseen for primary, secondary and tertiary
amines, ammonium ions additionally exhibit a dramatic influ-
ence over the size and shape of the ester methyl peaks (Fig. 2f
and g and Fig. S20 and S21, ESIw).
Chem. Res., 2008, 41, 1376; (d) I. Saraogi and A. D. Hamilton, Chem.
Soc. Rev., 2009, 38, 1726; (e) X. Zhao and Z. T. Li, Chem. Commun.,
2010, 46, 1601. For pioneering works on using H-bonds to rigidify
aromatic backbones, see: (f) Y. Hamuro, S. J. Geib and A. D.
Hamilton, Angew. Chem., Int. Ed., 1994, 33, 446; (g) V. Berl, I. Huc,
R. G. Khoury, M. J. Krische and J. M. Lehn, Nature, 2000, 407, 720;
(h) J. Zhu, R. D. Parra, H. Q. Zeng, E. Skrzypczak-Jankun, X. C. Zeng
It is known that ‘‘normal’’ CDCl slowly decomposes upon
3
and B. Gong, J. Am. Chem. Soc., 2000, 122, 4219; (i) V. Berl, I. Huc,
R. Khoury and J.-M. Lehn, Chem.–Eur. J., 2001, 7, 2798.
prolonged storage to produce trace amounts of DCl that may
protonate the amines or 1 to varying extents. To probe the
1
possible effect of DCl, the above H NMR-based analyses were
5 For cation-binding by pentamers, see: (a) B. Qin, C. L. Ren, R. J. Ye,
C. Sun, K. Chiad, X. Y. Chen, Z. Li, F. Xue, H. B. Su, G. A. Chass and
H. Q. Zeng, J. Am. Chem. Soc., 2010, 132, 9564; (b) C. L. Ren,
V. Maurizot, H. Q. Zhao, J. Shen, F. Zhou, W. Q. Ong, Z. Y. Du,
K. Zhang, H. B. Su and H. Q. Zeng, J. Am. Chem. Soc., 2011, 133, 13930.
For binding of organic cationic species, see: (c) A. R. Sanford, L. Yuan,
W. Feng, K. Yamato, R. A. Flowers and B. Gong, Chem. Commun.,
3
re-carried out in ‘‘neutralized’’ CDCl filtered with basic alumina.
For all the different types of amines studied, the fingerprint
regions identical to those shown in Fig. 2a–e were obtained
(Fig. S5a–e, ESIw). For primary ammonium salts, the broadening
2005, 4720. For water binding, see: (d) R. M. Meudtner and S. Hecht,
and disappearance of both amide and ester peaks take place with
Angew. Chem., Int. Ed., 2008, 47, 4926; (e) J.-M. Suk, V. R. Naidu,
X. Liu, M. S. Lah and K.-S. Jeong, J. Am. Chem. Soc., 2011, 133, 13938.
For anion recognition, see: (f) J. Garric, J.-M. Leger and I. Huc, Angew.
Chem., Int. Ed., 2005, 44, 1954; (g) W. Q. Ong, H. Q. Zhao, X. Fang,
S. Woen, F. Zhou, W. L. Yap, H. B. Su, S. F. Y. Li and H. Q. Zeng, Org.
Lett., 2011, 13, 3194; (h) H. Q. Zhao, W. Q. Ong, X. Fang, F. Zhou,
M. N. Hii, S. F. Y. Li, H. B. Su and H. Q. Zeng, Org. Biomol. Chem.,
addition of 10, rather than 4, equivalents of ammonium salts
8
(Fig. S5f, ESIw). Interestingly, addition of up to 12 equivalents
of secondary ammonium ions only leads to a slight decrease in
peak height with no observation of line broadening and dis-
appearance, suggesting that the combined use of ‘‘normal’ and
2
012, 10, 1172. For DNA G-quadruplex stabilizers, see: (i) P. S. Shirude,
‘
‘neutralized’’ CDCl
3
allows for a further differentiation between
E. R. Gillies, S. Ladame, F. Godde, K. Shin-Ya, I. Huc and
S. Balasubramanian, J. Am. Chem. Soc., 2007, 129, 11890. For ion
transporter, see: (j) A. J. Helsel, A. L. Brown, K. Yamato, W. Feng,
L. H. Yuan, A. J. Clements, S. V. Harding, G. Szabo, Z. F. Shao and
B. Gong, J. Am. Chem. Soc., 2008, 130, 15784.
W. Q. Ong, H. Q. Zhao, Z. Y. Du, J. Z. Y. Yeh, C. L. Ren, L. Z.
W. Tan, K. Zhang and H. Q. Zeng, Chem. Commun., 2011, 47, 6416.
7 (a) B. Qin, X. Y. Chen, X. Fang, Y. Y. Shu, Y. K. Yip, Y. Yan, S. Y.
Pan, W. Q. Ong, C. L. Ren, H. B. Su and H. Q. Zeng, Org. Lett., 2008,
primary and secondary ammonium ions.
1
While tetramer 1 displays up to six differential H NMR-based
patterns toward amines and ammonium ions (Fig. 2 and
Fig. S5, ESIw), similar analyses on shorter oligomers show
that both dimer 1b (Fig. S22, ESIw) and trimer 1d (Fig. S23,
ESIw) exhibit much less degenerated patterns. It is worthy to
note that primary and secondary ammonium ions also can be
confidently discriminated by both 1b and 1d. By combining
with 1, 1b further allows for the unambiguous differentiation
of primary from secondary amines.
6
10, 5127; (b) Y. Yan, B. Qin, Y. Y. Shu, X. Y. Chen, Y. K. Yip, D. W.
Zhang, H. B. Su and H. Q. Zeng, Org. Lett., 2009, 11, 1201; (c) Y. Yan,
B. Qin, C. L. Ren, X. Y. Chen, Y. K. Yip, R. J. Ye, D. W. Zhang,
H. B. Su and H. Q. Zeng, J. Am. Chem. Soc., 2010, 132, 5869.
8 In the computed structure that has a very high binding energy of
30.55 kcal mol , the primary ammonium ion is slightly nearer to the
ester side, forming strong H-bonds with 1 (1.79, 2.02 and 2.37 A,
Fig. 3d). In this case, our surmise is that the ammonium ion possibly
alters the NMR signals via chemical exchange involving ammonium
protons and protons from amide and ester groups of 1 by virtue of
forming a highly stable complex. The presence of DCl apparently
accelerates the exchange process, leading to much faster line broadening
1
The above observations from the H NMR experiments illustrate
ꢁ1
that varying amine and ammonium guests each displays a differ-
1
ential binding mode with host 1. By comparing H NMR finger-
˚
print regions involving the amide protons and the ester methyl
group in 1 and aided further by dimer 1b and trimer 1d, one could
possibly distinguish among various types of amines, between
ammonium ions, and between amine and ammonium guests.
3
and disappearance as seen in Fig. 2f when ‘‘normal’’ CDCl was used.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6343–6345 6345