K.J. Jobst et al. / International Journal of Mass Spectrometry 306 (2011) 9–26
25
4. Summary
his influence on scientists of many persuasions and interests, is
acknowledged with thanks
The fruitful interplay of theory and experiment of this study
(HBRCs) play a key role in the fascinating dissociation chemistry of
the N-formylethanolamine radical cation, HOCH2CH2NHC(H) O•+
(FE1).
JKT and KJJ thank the Natural Sciences and Engineering Research
Council of Canada (NSERC) for financial support and Prof. N.H.
Werstiuk for obtaining the UV photoelectron spectrum of N-
formylethanolamine. The assistance of Mr Tariq Mahmood in
optimising conditions for the condensation of ethanolamine with
methyl formate is gratefully acknowledged.
As discussed in Section 3.2, the primary fragmentations
involving the loss of CH2O and C2H3O• yield the distonic
ion •CH2N(H)CHOH+ and O-protonated formamide HC(OH)NH2
+
References
respectively. The competing H2O loss yields a mixture of N-
vinylformamide ions 1b and its cyclized distonic isomer 1a: the
present.
3.3 and Scheme 6, theory provides a rationale for the experimental
finding that the ions do not decarbonylate which implies that these
geometrical isomers have the same dissociation characteristics.
The mechanistic analysis of Section 3.4 and Scheme 7 indicates
that:
[1] (a) I. Howe, D.H. Williams, R.D. Bowen, Mass Spectrometry: Principles and
Applications, second ed., McGraw-Hill International Book Company, New York,
1981;
(b) F.W. McLafferty, F. Turecˇek, Interpretation of Mass Spectra, fourth ed., Uni-
versity Science Books, Mill Valley, 1993, p. 81;
(c) R.M. Smith, Understanding Mass Spectra: A Basic Approach, second ed., John
Wiley & Sons, Hoboken, 2004, p. 234;
(d) F. Turecˇek, in: N.M.M. Nibbering (Ed.), Encyclopedia of Mass Spectrometry,
vol. 4, Elsevier, Amsterdam, 2005, p. 396.
[2] M.B. Stringer, D.J. Underwood, J.H. Bowie, C.E. Allison, K.F. Donchi, P.J. Derrick,
Org. Mass Spectrom. 27 (1992) 270.
[3] D. Kuck, in: N.M.M. Nibbering (Ed.), Encyclopedia of Mass Spectrometry, vol. 4,
Elsevier, Amsterdam, 2005, pp. 110–111.
[4] (a) G. Bouchoux, Y. Hoppilliard, Int. J. Mass Spectrom. 90 (1989) 197;
(b) C.E. Hudson, L.L. Griffin, D.J. McAdoo, Org. Mass Spectrom. 24 (1989) 866;
(c) A.E. Dorigo, M.A. McCarrick, R.J. Loncharich, K.N. Houk, J. Am. Chem. Soc.
112 (1990) 7508.
[5] (a) J. Loos, D. Schröder, W. Zummack, H. Schwarz, R. Thissen, O. Dutuit, Int. J.
Mass Spectrom. 214 (2002) 105;
(i) cleavage of the C–C bond in the incipient molecular ions FE1
generates HBRC1, [CH2N(H)C(H) O· · ·H· · ·O = CH2]•+, which
serves as the direct precursor to CH2O loss.
(b) M. Semialjac, J. Loos, D. Schröder, H. Schwarz, Int. J. Mass Spectrom. 214
(2002) 129;
(c) D. Schröder, J. Loos, M. Semialjac, T. Weiske, H. Schwarz, G. Hohne, R. Thissen,
O. Dutuit, Int. J. Mass Spectrom. 214 (2002) 155.
(ii) a competing 1,5-H shift, the first step of
a
McLaf-
ferty
rearrangement,
generates
distonic
ion
FE2,
HOCHCH2N(H)C(H)OH•+,which serves as the precursor
for the loss of both C2H3O• and H2O.
[6] (a) J.A. Montgomery Jr., M.J. Frisch, J.W. Ochterski, G.A. Petersson, J. Chem. Phys.
112 (2000) 6532;
(iii) loss of C2H3O• from FE2 involves
a
(b) L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126 (2007) 084108;
(c) J.M.L. Martin, S. Parthiban, in: J. Cioslowski, A. Szarecka (Eds.), Quantum
Mechanical Prediction of Thermochemical Data, Understanding Chemical Reac-
tivity Series, vol. 22, Kluwer Academic Publishers, Dordrecht, 2005, pp. 31–65;
(d) L.N. Heydorn, Y. Ling, G. de Oliveria, J.M.L. Martin, Ch. Lifshitz, J.K. Terlouw,
Z. Phys. Chem. 215 (2001) 141.
type reaction in which HBRCs act as key intermediates:
FE2 → HBRC2 → HBRC4a → HC(OH)NH2+ + CH2 CHO•. Prior
to dissociation, a fraction of ions HBRC4a may undergo the
quid-pro-quo (QPQ) catalysis of Scheme 8, which would
co-generate the more stable acetyl radical CH3C O•.
[7] (a) R. Lee, P.J.A. Ruttink, P.C. Burgers, J.K. Terlouw, Can. J. Chem. 83 (2005) 1847;
(b) K.J. Jobst, T.R. Khan, J.K. Terlouw, Int. J. Mass Spectrom. 42 (2007) 1024.
[8] P.C. Burgers, J.K. Terlouw, in: N.M.M. Nibbering (Ed.), Encyclopedia of Mass
Spectrometry, vol. 4, Elsevier, Amsterdam, 2005, p. 173.
[9] (a) R. Lee, P.J.A. Ruttink, P.C. Burgers, J.K. Terlouw, Int. J. Mass Spectrom. 255
(2006) 244, and references cited therein;
(b) K.J. Jobst, P.C. Burgers, P.J.A. Ruttink, J.K. Terlouw, Int. J. Mass Spectrom. 254
(2006) 127.
[10] (a) D.J. McAdoo, C.E. Hudson, M. Skyiepal, E. Broido, L.L. Griffin, J. Am. Chem.
Soc. 109 (1987) 7648;
(iv) loss of H2O from FE2 involves communication with
ion–molecule complexes of vinyl alcohol and formimidic
acid, whose components may recombine to form distonic
ion FE3, HOCH(CH2)N(H)C(H)OH•+. This ion loses H2O via
the 1,5-H shift reaction FE3 → HBRC3a → ion 1b + H2O. The
facile cyclization of HBRC3a to HBRC3c may account for the
co-generation of ion 1a.
(b) J. Loos, D. Schröder, H. Schwarz, J. Org. Chem. 70 (2005) 1073.
[11] J.L. Holmes, K.J. Jobst, J.K. Terlouw, J. Labelled Compd. Radiopharm. 50 (2007)
1088.
The behaviour of the various D- and 18O-labelled isotopologues
of water, the positional identity of the D and O atoms is not com-
pletely retained. A rationale provided by theory for this finding
involves the participation of the QPQ type reactions of Scheme 9
for H/D exchange. Scheme 10 presents two side reactions of ion
IDC, a key intermediate in the H2O loss of Scheme 7, that lead to
[12] (a) H.F. van Garderen, P.J.A. Ruttink, P.C. Burgers, G.A. McGibbon, J.K. Terlouw,
Int. J. Mass Spectrom. Ion Process. 121 (1992) 159;
(b) N.H. Werstiuk, D.N. Butler, E. Shahid, Can. J. Chem. 65 (1986) 760.
[13] J.L. Holmes, C. Aubry, P.M. Mayer, Assigning Structures to Ions in Mass Spec-
trometry, CRC Press, Boca Raton, 2007.
[14] L. Tip, C. Versluis, J.W. Dallinga, W. Heerma, Anal. Chim. Acta 241 (1990) 219.
[15] M.J. Frisch et al. Gaussian 03 (Revision C.02), Gaussian, Inc., Wallingford CT,
2004.
[16] G. Schaftenaar, R. Postma, P.J.A. Ruttink, P.C. Burgers, G.A. McGibbon, J.K. Ter-
louw, Int. J. Mass Spectrom. Ion Process. 100 (1990) 521.
[17] G.A. McGibbon, P.C. Burgers, J.K. Terlouw, Int. J. Mass Spectrom. 136 (1994) 191.
[18] P.R. Schreiner, H.P. Reisenauer, F.C.I.V. Pickard, A.C. Simmonett, W.D. Allen, E.
Matyus, A.G. Csaszar, Nature 453 (2008) 906.
[19] (a) G. da Silva, C.-H. Kim, J.W. Bozzelli, J. Phys. Chem. A 110 (2006) 7925;
(b) E.A. Fogleman, H. Koizumi, J.P. Kercher, B. Sztáray, T. Baer, J. Phys. Chem. A
108 (2004) 5288;
(c) G. Bouchoux, J. Chamot-Rooke, D. Leblanc, P. Morgues, M. Sablier, Chem.
Phys. Chem. 2 (2001) 235.
[20] B.L.M. van Baar, P.C. Burgers, J.L. Holmes, J.K. Terlouw, Org. Mass Spectrom. 23
(1988) 355 (note that the CIDI mass spectra of CH3CO• (Fig. 2a) and CH2CHO•
(Fig. 2b) are transposed).
Finally, a re-examination of the dissociation of protonated
N-formylethanolamine proposes that the losses of H2O and CO
generate protonated 2-oxazoline and N-protonated ethanol-amine
respectively via the mechanisms of Scheme 11.
Acknowledgements
[21] (a) T. Wong, J. Warkentin, J.K. Terlouw, Int. J. Mass Spectrom. Ion Process. 115
(1992) 33;
(b) M.M. Cordero, J.J. Houser, C. Wesdemiotis, Anal. Chem. 65 (1993) 1594.
[22] J.K. Terlouw, P.C. Burgers, H. Hommes, Org. Mass Spectrom. 14 (1979) 387.
[23] P.J.A. Ruttink, P.C. Burgers, J.K. Terlouw, Int. J. Mass Spectrom. Ion Process. 145
(1995) 35.
The role of the late Professor Dudley Williams in developing and
popularising experimental approaches to studying and describ-
ing the reactions of ions [30], his enthusiasm for science, and