Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
the catenane binds anions more strongly than the macrocycle
by factors of up to 3.5. Simplistically, a factor of two would be
expected if the increase in binding was purely electrostatic due
to the doubling of the positive charge. The topology of the
cavity can therefore be said to contribute to the enhanced anion
5
6
7
Z. Xu, S. K. Kim and J. Yoon, Chem. Soc. Rev., 2010, 39,
1457–1466.
J. Cai and J. L. Sessler, Chem. Soc. Rev., 2014, 43, 6198–
6213.
E. Alcalde, N. Mesquida, L. Pérez-García, C. Alvarez-Rúa, S.
García-Granda, E. E. García-Rodriguez, N. Mesquida and L.
Pérez-García, Chem. Commun., 1999, 295–296.
B. M. Rambo, H. Y. Gong, M. Oh and J. L. Sessler, Acc.
Chem. Res., 2012, 45, 1390–1401.
DOI: 10.1039/D0CC06299E
binding, again consistent with
a catenane structure.
Geometrically controlled selectivity is illustrated by the basic,
trigonal planar acetate being the weakest bound by catenane 6.
8
9
C. J. Serpell, J. Cookson, A. L. Thompson and P. D. Beer,
Chem. Sci., 2011, 2, 494–500.
Anion
F-
Macrocycle 5
82 (2)
163 (2)
171 (6)
145 (5)
Catenane 6
291 (20)
479 (17)
524 (23)
271 (14)
242 (4)
6/5 ratio
3.5
2.9
3.1
1.9
10
11
H. Zhou, Y. Zhao, G. Gao, S. Li, J. Lan and J. You, J. Am.
Chem. Soc., 2013, 135, 14908–14911.
Cl-
Br-
C. Kavitha, N. J. Singh, H. In-Chul, L. Jung Woo, S. K. Kwang,
K. Chellappan, N. J. Singh, I.-C. Hwang, J. W. Lee and K. S.
Kim, Angew. Chem. Int. Ed., 2005, 44, 2899–2903.
Y. Chun, N. Jiten Singh, I. C. Hwang, J. Woo Lee, S. U. Yu
and K. S. Kim, Nat. Commun., 2013, 4, 1–8.
C. J. Serpell, R. Chall, A. L. Thompson and P. D. Beer, Dalt.
Trans., 2011, 40, 12052–12055.
G. T. Spence, C. J. Serpell, J. Sardinha, P. J. Costa, V. Félix
and P. D. Beer, Chem. - A Eur. J., 2011, 17, 12955–12966.
G. T. Spence, N. G. White and P. D. Beer, Org. Biomol.
Chem., 2012, 10, 7282–7291.
S. Dong, J. Yuan and F. Huang, Chem. Sci., 2014, 5, 247–
252.
N. Farahani, K. Zhu, C. A. O’Keefe, R. W. Schurko and S. J.
Loeb, Chempluschem, 2016, 81, 836–841.
P. Langer, L. Yang, C. R. Pfeiffer, W. Lewis and N. R.
Champness, Dalt. Trans., 2019, 48, 58–64.
W. B. Hu, W. J. Hu, X. L. Zhao, Y. A. Liu, J. S. Li, B. Jiang and
K. Wen, Chem. Commun., 2015, 51, 13882–13885.
A. Caballero, F. Zapata, N. G. White, P. J. Costa, V. Félix and
P. D. Beer, Angew. Chemie Int. Ed., 2012, 51, 1876–1880.
S. S. Ramos, E. Alcalde, G. Doddi, P. Mencarelli, L. Perez-
Garcia and L. Peréz-García, J. Org. Chem., 2002, 67, 8463–
8468.
I-
AcO-
119 (10)
2.0
12
13
14
15
16
17
18
19
20
21
Table 1 – Association constants (mol-1 dm3) for titration of 5 and 6 with
tetrabutylammonium salts in 9:1 MeCN-d3/H2O (293 K). Errors are given in
brackets. Stacked spectra of these titrations can be found in the Supplementary
Information Fig. S17-S26
In conclusion, the first hydrogen bonding imidazolium catenane
has been prepared via a chloride anion template Grubbs’
catalysed RCM double cyclisation synthesis. Evidence for the
catenated topology is found in the synthetic outcomes with
respect to templating anion stoichiometry, mass spectrometry
(fragmentation and ion mobility), NMR, and anion binding
trends. The catenane is dense in anion-binding functionality and
displayed improved anion recognition properties in competitive
aqueous solvent mixtures when compared to the macrocyclic
analogue. The geometric demands of the interlocked cavity
results in an unusual halide selectivity preference for bromide.
Further elaboration of imidazolium-dense structures may
permit yet stronger and more selective anion coordination in
competitive aqueous media.
Conflicts of interest
There are no conflicts to declare.
22
23
24
S. De, F. Joó, H. Horváth, A. Udvardy and C. E. Czégéni, J.
Organomet. Chem., 2020, 918, 121308.
J. Li, P. Zhang, Y. Xu, Z. Su, Y. Qian, S. Li, T. Yu, P. J. Sadler
and H. K. Liu, Dalt. Trans., 2017, 46, 16205–16215.
A. Fernández, D. Vázquez-García, A. García-Fernández, I.
Marcos-Cives, C. Platas-Iglesias, S. Castro-García and M.
Sánchez-Andújar, Inorg. Chem., 2018, 57, 7655–7664.
J.-P. Sauvage and J. Weiss, J. Am. Chem. Soc., 1985, 107,
6108–6110.
C. A. Schalley, J. Hoernschemeyer, X. Lia, G. Silva and P.
Weis, Int. J. Mass Spec., 2003, 228, 373–388.
M. Hutin, C. A. Schalley, G. Bernardinelli and J. R. Nitschke,
Chem. - A Eur. J., 2006, 12, 4069–4076.
W. Zhang, A. Abdulkarim, F. E. Golling, H. J. Räder and K.
Müllen, Angew. Chemie Int. Ed., 2017, 56, 2645–2648.
A. Kruve, K. Caprice, R. Lavendomme, J. M. Wollschläger, S.
Schoder, H. V. Schröder, J. R. Nitschke, F. B. L. Cougnon and
C. A. Schalley, Angew. Chemie Int. Ed., 2019, 58, 11324–
11328.
Acknowledgements
C.J.S. thanks Johnson Matthey and the Engineering and
Physical Sciences Research Council for a CASE Studentship.
25
26
27
28
29
Notes and references
1
M. J. Langton, C. J. Serpell and P. D. Beer, Angew. Chemie -
Int. Ed., 2016, 55, 1974–1987.
M. Elias, A. Wellner, K. Goldin-Azulay, E. Chabriere, J. A.
Vorholt, T. J. Erb and D. S. Tawfik, Nature, 2012, 491, 134–
137.
K. M. Bąk, K. Porfyrakis, J. J. Davis and P. D. Beer, Mater.
Chem. Front., 2020, 4, 1052–1073.
J. Yoon, S. K. Kim, N. J. Singh and K. S. Kim, Chem. Soc. Rev.,
2006, 35, 355–360.
2
3
4
30
M. J. Hynes, J. Chem. Soc. Dalt. Trans., 1993, 311–312.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins