Paper
RSC Advances
numerous pores on its surface. EDX revealed the Pd was still
uniformly distributed on the HCPs without obvious agglomer-
ation. In the last cycle, the palladium concentration in the
ltrate was calculated by AAS to be 10 mg Lꢁ1. The very small
amount of Pd in solution demonstrates that little metal leach-
ing occurred in the reaction medium.
2 (a) L. R. Chen, D. Leslie, M. G. Coleman and J. Mack, Chem.
Sci., 2018, 9, 4650–4661; (b) T. Ichikawa, M. Mizuno, S. Ueda,
N. Ohneda, H. Odajima, Y. Sawama, Y. Monguchi and
H. Sajiki, Tetrahedron, 2018, 74, 1810–1816; (c) Q. X. Liu,
Z. L. Hu, S. C. Yu, Z. X. Zhao, D. C. Wei and H. L. Li, ACS
Omega, 2018, 3, 4035–4047; (d) A. Elhage, B. W. Wang,
N. Marina, M. L. Marin, M. Cruz, A. E. Lanterna and
J. C. Scaiano, Chem. Sci., 2018, 9, 6844–6852; (e) Z. Jia,
K. Wang, B. Tan and Y. Gu, ACS Catal., 2017, 7, 3693–3702.
3 (a) E. Chiurchiu, S. Gabrielli, R. Ballini and A. Palmieri, Green
Chem., 2017, 19, 4956–4960; (b) A. Kokel, C. Schafer and
B. Torok, Green Chem., 2017, 19, 3729–3751; (c) S. Verma,
R. B. N. Baig, M. N. Nadagouda, C. Len and R. S. Varma,
Green Chem., 2017, 19, 164–168; (d) I. K. M. Yu,
X. N. Xiong, D. C. W. Tsang, L. Wang, A. J. Hunt, H. Song,
J. Shang, Y. S. Ok and C. S. Poon, Green Chem., 2019, 21,
1267–1281; (e) J. W. Zhong, Y. P. Xu and Z. M. Liu, Green
Chem., 2018, 20, 2412–2427.
4 (a) F. M. Wisser, P. Berruyer, L. Cardenas, Y. Mohr,
E. A. Quadrelli, A. Lesage, D. Farrusseng and J. Canivet,
ACS Catal., 2018, 8, 1653–1661; (b) F. M. Wisser, Y. Mohr,
E. A. Quadrelli, D. Farrusseng and J. Canivet,
ChemCatChem, 2018, 10, 1778–1782.
5 (a) S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim,
G. W. Huber and J. Lee, Green Chem., 2019, 21, 3715–3743;
(b) M. D. Argyle and C. H. Bartholomew, Catalysts, 2015, 5,
145–269; (c) P. Schwach, X. L. Pan and X. H. Bao, Chem.
Rev., 2017, 117, 8497–8520.
Conclusion
In summary, we have prepared a novel heterogeneous catalyst
supported on hypercrosslinked polymers. The catalyst was
synthesized via the external cross-linking reaction of
substituted 1,2,3-triazoles with benzene and formaldehyde
dimethyl acetal. The structure and composition of the catalyst
were characterized by FT-IR, N2 sorption, TGA, SEM, EDX, TEM,
XPS and ICP-AES. The results show that HCPs-Pd exhibits high
specic surface area, large microporous volume, chemical and
thermal stability, and good dispersion of palladium chloride.
The catalytic performance of HCPs-Pd was evaluated in Suzuki–
Miyaura coupling reactions. The results show that HCPs-Pd is
a highly active catalyst for the Suzuki–Miyaura coupling reac-
tion, affording biaryl products with TON values reaching 1.66 ꢀ
104. In this reaction, the catalyst could be reused six times
without any obvious loss of catalytic activity.
Conflicts of interest
The authors declare that there are no conicts of interest.
6 (a) L. Tan and B. Tan, Chem. Soc. Rev., 2017, 46, 3322–3356;
(b) K. Song, Z. Zou, D. Wang, B. Tan, J. Wang, J. Chen and
T. Li, J. Phys. Chem. C, 2016, 120, 2187–2197; (c)
Acknowledgements
¨
S. Farsadpour, L. T. Ghoochany, S. Shylesh, G. Dorr,
This research was nancially supported by the Natural Science
Foundation of Hunan Province (No. 2018JJ3409), Scientic
Research Program of Huaihua University (No. HHUY2019-05),
Scientic Research Fund of Hunan Provincial Education
Department (17A166), the Foundation of Huaihua University
Double First-rate Applied Characteristic Discipline Construc-
tion Projects of Materials Science and Engineering (No.
19CKA003), and the Foundation of Hunan Double First-rate
Discipline Construction Projects (No. YYZW2019-02).
A. Seifert, S. Ernst and W. R. Thiel, ChemCatChem, 2012, 4,
401–407.
7 (a) B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan and T. Li,
Adv. Mater., 2012, 24, 3390–3395; (b) J. Huang and
S. R. Turner, Polym. Rev., 2018, 58, 1–41; (c) Z. Jia, K. Wang,
B. Tan and Y. Gu, Adv. Synth. Catal., 2017, 359, 78–88; (d)
J. J. Bi, Y. H. Dong, D. J. Zhu, W. Guo, D. Meng and T. Li,
Appl. Surf. Sci., 2019, 495, 9.
8 (a) Z. Jia, K. Wang, T. Li, B. Tan and Y. Gu, Catal. Sci.
Technol., 2016, 6, 4345–4355; (b) C. Tang, Z. J. Zou, Y. F. Fu
and K. P. Song, ChemistrySelect, 2018, 3, 5987–5992; (c)
S. J. Xu, Y. L. Luo and B. E. Tan, Macromol. Rapid
Commun., 2013, 34, 471–484; (d) S. Xu, K. Song, T. Li and
B. Tan, J. Mater. Chem. A, 2015, 3, 1272–1278.
Notes and references
1 (a) Y. Kobayashi, Y. Tang, T. Kageyama, H. Yamashita,
N. Masuda, S. Hosokawa and H. Kageyama, J. Am. Chem.
Soc., 2017, 139, 18240–18246; (b) L. C. Liu and A. Corma,
Chem. Rev., 2018, 118, 4981–5079; (c) C. Coperet, A. Comas-
Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel,
9 (a) M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym.,
2006, 66, 768–779; (b) J. Germain, J. M. J. Frechet and F. Svec,
J. Mater. Chem., 2007, 17, 4989–4997.
H. Nagae, F. Nunez-Zarur and P. A. Zhizhko, Chem. Rev., 10 R. Dawson, A. I. Cooper and D. J. Adams, Prog. Polym. Sci.,
2016, 116, 323–421; (d) J. L. Wang and Z. Y. Bai, Chem. Eng.
2012, 37, 530–563.
J., 2017, 312, 79–98; (e) H. Ishitani, K. Kanai, W. J. Yoo, 11 (a) V. A. Davankov, G. I. Timofeeva, M. M. Ilyin and
T. Yoshida and S. Kobayashi, Angew. Chem., Int. Ed., 2019,
58, 13313–13317; (f) H. Miyamura, F. Tobita, A. Suzuki and
S. Kobayashi, Angew. Chem., Int. Ed., 2019, 58, 9220–9224;
M. P. Tsyurupa, J. Polym. Sci., Part A: Polym. Chem., 1997,
ˇ´
35, 3847–3852; (b) P. Veverka and K. Jerabek, React. Funct.
Polym., 1999, 41, 21–25.
(g) M. Tamura, N. Yuasa, J. Cao, Y. Nakagawa and 12 V. A. Davankov, S. V. Rogoshin and M. P. Tsyurupa, J. Polym.
K. Tomishige, Angew. Chem., Int. Ed., 2018, 57, 8058–8062.
Sci., Polym. Symp., 1974, 47, 95–101.
This journal is © The Royal Society of Chemistry 2020
RSC Adv., 2020, 10, 17123–17128 | 17127