2308
T. KOTAKE et al.
various polysaccharides and PNP-substrates, the activ-
ities of rIl1,3Gal were examined. rIl1,3Gal failed to
hydrolyze polysaccharides lacking ꢀ-(1 ! 3)-galactosyl
residues (Table 2). Furthermore, rIl1,3Gal hydrolyzed
ꢀ-(1 ! 3)-galactobiose and -triose into Gal, whereas the
other galactooligosaccharides and laminaribiose [ꢀ-Glc-
Acknowledgments
This research was supported in part by a Grant-in-Aid
for Scientific Research (to T.K, no. 17770028) from
Ministry of Education, Culture, Sports, Science, and
Technology of Japan.
(
1 ! 3)-Glc] did not serve as substrates (Fig. 4). These
results indicate that the cloned cDNA encodes bona fide
exo-ꢀ-(1 ! 3)-galactanase. They also revealed that
rIl1,3Gal has relatively high activity toward AGPs: the
specific activity of rIl1,3Gal toward native AGP was
estimated to be 33.3 units/mg protein, apparently higher
than those of other recombinant exo-ꢀ-(1 ! 3)-galacta-
References
1) Fincher GB, Stone BA, and Clarke AE, Annu. Rev. Plant
Physiol., 34, 47–70 (1983).
2
)
)
Nothnagel EA, Int. Rev. Cytol., 174, 195–291 (1997).
Tsumuraya Y, Ogura K, Hashimoto Y, Mukoyama H, and
Yamamoto S, Plant Physiol., 86, 155–160 (1988).
3
1
5–17)
nases (ranging from 0–6.1 units/mg protein).
The
4
5
6
)
)
)
Henrissat B, Biochem. J., 280, 309–316 (1991).
activity toward AGPs at least partially depends on
bypass activity, with which the enzyme continues
hydrolysis of ꢀ-(1 ! 3)-galactan main chains replaced
with ꢀ-(1 ! 6)-galactosyl side chains. Since the
enzyme also exhibited high activity toward polymers I
and II, in which ꢀ-(1 ! 3)-galactan main chains are
replaced approximately 80% and 40% respectively with
Henrissat B and Bairoch A, Biochem. J., 293, 781–788 (1993).
Sekimata M, Ogura K, Tsumuraya Y, Hashimoto Y, and
Yamamoto S, Plant Physiol., 90, 567–574 (1989).
7) Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima
M, Watanabe Y, Kimura K, and Tsumuraya Y, Plant Physiol.,
1
38, 1563–1576 (2005).
8
)
)
Hata K, Tanaka M, Tsumuraya Y, and Hashimoto Y, Plant
Physiol., 100, 388–396 (1992).
1
4)
ꢀ
-(1 ! 6)-galactosyl side chains,
it is likely that
9
Kotake T, Tsuchiya K, Aohara T, Konishi T, Kaneko S, Igarashi
K, Samejima M, and Tsumuraya Y, J. Exp. Bot., 57, 2353–2362
(2006).
Il1,3Gal efficiently degrades the ꢀ-(1 ! 3)(1 ! 6)-
galactan backbones of AGPs by bypassing the side
chains.
10) Kuroyama H, Tsutsui N, Hashimoto Y, and Tsumuraya Y,
Carbohydr. Res., 333, 27–39 (2001).
1
1) Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T,
Kaneko S, Igarashi K, Samejima M, and Tsumuraya Y,
Carbohydr. Res., 343, 1191–1201 (2008).
Mode of action of rIl1,3Gal
The reaction products of ꢀ-(1 ! 3)-galactan, poly-
mers I and II, and AGP from radish roots by rIl1,3Gal
were analyzed by HPLC. The product released from ꢀ-
1
2) Okemoto K, Uekita T, Tsumuraya Y, Hashimoto Y, and
Kasama T, Carbohydr. Res., 338, 219–230 (2003).
13) Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H,
(
1 ! 3)-galactan consisted mainly of Gal, and included
and Tsumuraya Y, Biochem. J., 377, 749–755 (2004).
4) Tsumuraya Y, Mochizuki N, Hashimoto Y, and Kov a´ cˇ P, J.
Biol. Chem., 265, 7207–7215 (1990).
small amounts of ꢀ-(1 ! 6)-galactobiose derived from
1
1
ꢀ
degradation repeated thrice (Fig. 5A).
-(1 ! 6)-galactosyl branches remaining after Smith
14)
The results
5) Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K,
Tsumuraya Y, Samejima M, Hirabayashi J, Kobayashi H, and
Kaneko S, J. Biol. Chem., 280, 25820–25829 (2005).
clearly indicated that the enzyme acts on the ꢀ-(1 ! 3)-
galactan main chain in an exo-fashion, bypassing the
ꢀ
-(1 ! 6)-galactosyl side chains. The enzyme also
16) Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K,
Hirabayashi J, Tsumuraya Y, and Kaneko S, Appl. Environ.
Microbiol., 72, 3515–3523 (2006).
released Gal, ꢀ-(1 ! 6)-galactobiose and -triose and
ꢁ
-L-Ara-(1 ! 3)-ꢀ-Gal-(1 ! 6)-Gal from polymers II
1
7) Ichinose H, Kotake T, Tsumuraya Y, and Kaneko S, Biosci.
Biotechnol. Biochem., 70, 2745–2750 (2006).
8) Laemmli UK, Nature, 227, 680–685 (1970).
and I, confirming its high bypass activity (Fig. 5B and
C). Degradation of ꢀ-(1 ! 3)-galactan main chains
releasing oligosaccharides together with Gal was also
observed for native AGP from radish roots (Fig. 5D).
These results clearly indicate that Il1,3Gal is an exo-ꢀ-
1
1
9) Bradford MM, Anal. Biochem., 72, 248–254 (1976).
20) Nelson N, J. Biol. Chem., 153, 375–380 (1944).
21) Somogyi M, J. Biol. Chem., 195, 19–23 (1952).
2
2
2) Matsuura F and Imaoka A, Glycoconj. J., 5, 13–26 (1988).
3) Pellerin P and Brillouet JM, Carbohydr. Res., 264, 281–291
(
1 ! 3)-galactanase efficiently acting on the ꢀ-(1 ! 3)-
galactan main chains of AGPs by bypassing the side
chains.
(
1994).
4) Gemmill TR and Trimble RB, Biochim. Biophys. Acta, 1426,
27–237 (1999).
2
2
2
Biological functions of Il1,3Gal
Exo-ꢀ-(1 ! 3)-galactanase and endo-ꢀ-(1 ! 6)-gal-
5) Ichinose H, Kotake T, Tsumuraya Y, and Kaneko S, Appl.
Environ. Microbiol., 74, 2379–2383 (2008).
actanase appear to exist in various organisms, including
2–17,25)
26) Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap
PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen
MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S,
Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin
EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A,
Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C,
Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer
M, van den Hombergh JP, van den Hondel CA, van der Heijden
RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van
Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R,
Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M,
Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM,
Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de
Vondervoort PJ, Wedler H, W o¨ sten HA, Zeng AP, van Ooyen
AJ, Visser J, and Stam H, Nat. Biotechnol., 25, 221–231 (2007).
1
bacteria and fungi.
AGPs are probably degraded
into monosaccharides and oligosaccharides in synergis-
tic reactions of these enzymes and ꢁ-L-arabinofuranosi-
dase. Additionally, ꢀ-glucuronidase of GHF 79 appears
1
0,11)
to participate in the degradation process.
The bypass
activity of exo-ꢀ-(1 ! 3)-galactanase probably accel-
erates the hydrolysis of ꢀ-(1 ! 3)-galactan main chains
with side chains. Based on the genomes, A. niger and
N. crassa appeared to possess homologs of these four
enzymes.2
6,27)
In the future study, the synergistic
reaction of the hydrolases should be clarified in each
organism.
2
7) Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND,