Journal of the American Chemical Society
Page 4 of 5
B and C, Tyr is replaced with Phe and Trp, respectively. In our
AUTHOR INFORMATION
Corresponding Authors
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
current working model (Fig. 4B), a 5-cycloheptene-1,3-dione
carbanion attacks the α-ketone carbonyl of an aromatic glyoxylyl-
CoA (15) to give 16. Lactone formation is driven by the loss of
CoA forming 17. DMSP then, most likely via Cys, provides the
sulfur for the thiomethyl group by an unknown mechanism, per-
haps akin to that recently proposed for sulfur insertion into
Notes
27
TDA. Additional experiments will be necessary to test this pro-
The authors declare no competing financial interests.
posed pathway, and studies addressing the genetics and enzymol-
ogy of roseobacticide biosynthesis are currently underway.
ACKNOWLEDGMENT
S
O
34
We thank Prof. Jeroen Dickschat for the kind gift of S-Cys, Dr.
Istvan Pelczer at the Princeton Department of Chemistry NMR
facility for assistance with NMR data acquisition, and grants from
the National Institutes of Health (GM098299 to M.R.S.,
GM086258 to J.C. and GM82137 to R.K.) for support of this
work.
O
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
O
OH
S
OH
A
OH
3
O
O
4
1
O
HO
OH
Phe
Phe
Base:
H
Base:
SCoA
OH
O
B
R=H
REFERENCES
O
O
OH
H
CoAS
3 O
a
R
15
(1) Clardy, J.; Walsh, C. T. Nature 2004, 432, 829.
(2) Meinwald, J. J. Nat. Prod. 2011, 74, 305.
(3) Seyedsayamdost, M. R.; Case, R. J.; Kolter, R.; Clardy, J. Nat.
Chem. 2011, 3, 331.
(4) Seyedsayamdost, M. R.; Carr, G.; Kolter, R.; Clardy, J. J. Am.
Chem. Soc. 2011, 133, 18343.
R
O
O
O
B
14
16
A
R=OH
CoAS
H2O
Phe
O
Tyr
pCA
c
b
O
(5) Geng, H.; Belas, R. Curr. Opin. Biotechnol. 2010, 21, 332.
O
O
(6) Wagner-Döbler, I.; Biebl, H. Annu. Rev. Microbiol. 2006, 60,
H2O 'Cys'
R
R
2
55.
17
S
O
(7) Buchan, A.; Gonzalez, J. M.; Moran, M. A. Appl. Environ.
Microbiol. 2005, 71, 5665.
(8) Siegel, D. A.; Franz, B. A. Nature 2010, 466, 569.
Figure 4. Precursors and proposed pathway for roseobacticide
biosynthesis. (A) Roseobacticide A may be synthesized from two
algal molecules (1 & 4) and from the algal growth promoter (3)
used during mutualism. (B) Phe may be converted to 3 and 5-
cycloheptene-1,3-dione (14) via pathway (a), previously de-
(
9) Holligan, P. M.; Fernandez, E.; Aiken, J.; Balch, W. M.; Boyd, P.;
Burkill, P. H.; Finch, M.; Groom, S. B.; Malin, G.; Muller, K.;
Purdie, D. A.; Robinson, C.; Trees, C. C.; Turner, S. M.; van der
Wal, P. Global Biogeochem. Cycles 1993, 7, 879.
(10) Sule, P.; Belas. R. J. Bacteriol. 2013, 195, 637.
1
7
(
(
(
(
11) Wang, H.; Tomasch, J.; Jarek, M.; Wagner-Döbler, I. Front.
scribed.
Tyr may be provided by
a
putative TAL
Microbiol. 2014, 5, 311.
(
PGA1_c36340, reaction b) or from Phe (reaction c). See text for
12) Bruhn, J. B.; Nielsen, K. F.; Hjelm, M.; Hansen, M.; Bresciani, J.;
Schulz, S.; Gram, L. Appl. Environ. Microbiol. 2005, 71, 7263.
13) Greer, E. M.; Aebisher, D.; Greer, A.; Bentley, R. J. Org. Chem.
a description.
In conclusion, the roseobacticides are assembled from three
molecules (1, 3, 4) that play key roles in the symbiosis between
members of the roseobacter and a marine alga (Fig. 4A).
Phenylacetic acid (3) is a bacterially-produced algal growth pro-
moter, p-coumaric acid (4) is an algal senescence molecule, and
Cys is derived from algal DMSP (1), which nourishes the bacte-
ria. All three are combined by P. inhibens to generate the
roseobacticides. Thus, beneficial molecules in the mutualistic
phase are converted into toxins in the parasitic phase – a remarka-
ble example of metabolic economy. This economy likely reflects
both the nutrient-poor environment in which the symbiosis occurs
and the necessity for a switch-like conversion. Finally, the study
illustrates that defining biosynthetic pathways not only describes a
set of chemical reactions, but can also provide insights into the
molecular dialogue governing symbiotic interactions.
2
008, 73, 280.
14) Geng, H.; Bruhn, J. B.; Nielsen, K. F.; Gram, L.; Belas, R. Appl.
Environ. Microbiol. 2008, 74, 1535.
(15) Croft, M. T.; Lawrence, A. D.; Raux-Deery, E.; Warren, M. J.;
Smith, A. G. Nature 2005, 438, 90.
(16) Wagner-Döbler, I. et al. ISME J. 2010, 4, 61.
(17) Thiel, V.; Brinkhoff, T.; Dickschat, J. S.; Wickel, S.; Grunenberg,
J.; Wagner-Döbler, I.; Simon, M.; Schulz, S. Org. Biomol. Chem.
2
010, 8, 234.
18) MacDonald, M. J.; D'Cunha, G. B. Biochem. Cell Biol. 2007, 85,
73.
(
(
(
2
19) Robbins, R. J.; Schmidt, W. F. J. Label. Compd. Radiopharm.
2004, 47, 797.
20) Skowera, K.; Kanska, M. J. Label. Compd. Radiopharm. 2008,
51, 321.
(21) Murata, S.; Sugiyama, K.; Tomioka, H. J. Org. Chem. 1993, 58,
976.
(22) Berger, M.; Brock, N. L.; Liesegang, H.; Dogs, M.; Preuth, I.;
1
ASSOCIATED CONTENT
Simon, M.; Dickschat, J.; Brinkhoff, T.
Microbiol. 2012, 78, 3539.
Appl. Environ.
Supporting Information
General procedures; methods and analytical data for the synthesis
(
(
23) Rhee, S.-K.; Fuchs, G. Eur. J. Biochem. 1999, 262, 507
24) Brock, N. L.; Menke, M.; Klapschinski, T. A.; Dickschat, J. S.
Org. Biomol. Chem. 2014, 12, 4318.
2
13
2
of ring- H -pCA, 2- C-pCA, ring- H -phenylpyruvic acid, and
4
5
2
ring- H
5
-phenylglyoxylic acid; NMR and MS data for roseo-
(25) Dickschat, J. S.; Zell, C.; Brock, N. L. Chembiochem. 2010, 11,
2
13
bacticides isolated from cultures containing ring- H -Tyr, 2- C-
Tyr, ring- H
phenylpyruvic acid, ring- H -phenylglycine, ring- H -phenyl-
glyoxylic acid, and S-Cys. This material is available free of
charge via the Internet at http://pubs.acs.org.
417.
4
2
2
13
2
(26) Kiene, R. P.; Linn, L. J.; Gonzalez, J.; Moran, M. A.; Bruton, J.
5
-Phe, 3-F-Tyr, ring- H
4
-pCA, 2- C-pCA, ring- H
5
-
2
2
A. Appl. Environ. Microbiol. 1999, 65, 4549.
5
5
34
(27) Brock, N. L.; Nikolay, A.; Dickschat, J. S. Chem. Commun.
014, 50, 5487.
2
ACS Paragon Plus Environment