Organic Letters
Letter
compounds 1 and 2 was only reduced but not eliminated since p-
REFERENCES
1) Quandt, C. A.; Kepler, R. M.; Gams, W.; Arauj
Evans, H. C.; Hughes, D.; Humber, R.; Hywel-Jones, N.; Li, Z. IMA
■
hydroxybenzoic acid could also be originated from the shikimic
(
́
o, J. P.; Ban, S.;
2
6
acid pathway.
These results show that the biosynthesis of balanol involves
two convergent biosynthetic pathways, in which PKS is
responsible for biosynthesis of benzophenone and other
polyketides and the NRPS Bln O produces the dipeptides 1
and 2. Coupling of the parallel products is achieved by
esterification of 3 and 1 to generate balanol (4), which is
catalyzed by the NRPS Bln N. This result is consistent with the
fungus 2014, 5, 121−134.
(2) Kneifel, H.; Konig, W. A.; Loeffler, W.; Muller, R. Arch. Microbiol.
̈
1
(
977, 113, 121−130.
3) Kulanthaivel, P.; Hallock, Y. F.; Boros, C.; Hamilton, S. M.; Janzen,
W. P.; Ballas, L. M.; Loomis, C. R.; Jiang, J. B.; Katz, B. J. Am. Chem. Soc.
993, 115, 6452−6453.
4) Boros, C.; Hamilton, S. M.; Katz, B.; Kulanthaivel, P. J. Antibiot.
994, 47, 1010−1016.
5) Pande, V.; Ramos, M. J.; Gago, F. Anti-Cancer Agents Med. Chem.
1
(
1
(
27
hypothesis introduced by Molnar. Based on a combination of
́
15
the studies conducted on the homologous mdp cluster and the
findings of our study, a biosynthetic pathway for balanol was
proposed (Figure 5). The mechanism for the removal of the
ketone of the amide bond during balanol biosynthesis will
require further study.
2008, 8, 638−645.
(6) Lampe, J. W.; Hughes, P. F.; Biggers, C. K.; Smith, S. H.; Hu, H. J.
Org. Chem. 1994, 59, 5147−5148.
(7) Nicolaou, K.; Bunnage, M. E.; Koide, K. J. Am. Chem. Soc. 1994,
1
(
16, 8402−8403.
8) Adams, C.; Fairway, S.; Hardy, C.; Hibbs, D.; Hursthouse, M.;
Morley, A.; Sharp, B.; Vicker, N.; Warner, I. J. Chem. Soc., Perkin Trans. 1
995, 2355−2362.
9) Lai, Y.-S.; Mendoza, J. S.; Jagdmann, G. E.; Menaldino, D. S.;
In summary, we identified the balanol biosynthetic gene
cluster bln for the first time by genome mining. By over-
expression of the pathway-specific regulatory gene blnR from the
bln cluster, the biosynthesis of balanol and other intermediate
compounds was activated. By gene deletion and analysis of the
metabolite profile, the biosynthetic pathway of balanol,
containing independent PKS and NRPS pathways, was
proposed. Convergence of these pathways is achieved by
intramolecular ester bond formation between parallel products,
which is catalyzed by the NRPS Bln N. The discovery of the
balanol biosynthetic pathway will provide improved access to
balanol and its analogues and could also improve our
understanding of the mechanisms of fungal hybrid PK-NRP
metabolite biosynthesis.
1
(
Biggers, C. K.; Heerding, J. M.; Wilson, J. W.; Hall, S. E.; Jiang, J. B.;
Janzen, W. P. J. Med. Chem. 1997, 40, 226−235.
(10) Miyabe, H.; Torieda, M.; Kiguchi, T.; Naito, T. Synlett 1997,
1997, 580−582.
(
11) Tanner, D.; Tedenborg, L.; Almario, A.; Pettersson, I.; Cso
I.; Kelly, N. M.; Andersson, P. G.; Hogberg, T. Tetrahedron 1997, 53,
857−4868.
12) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito,
T. J. Org. Chem. 1998, 63, 4397−4407.
13) Denieul, M.-P.; Laursen, B.; Hazell, R.; Skrydstrup, T. J. Org.
̈
regh,
̈
4
(
(
Chem. 2000, 65, 6052−6060.
(14) Xu, Q.; Lu, L.; Chen, S.; Zheng, J.; Zheng, G.; Li, Y. Chin. J. Chem.
Eng. 2009, 17, 278−285.
(15) Chiang, Y.-M.; Szewczyk, E.; Davidson, A. D.; Entwistle, R.;
ASSOCIATED CONTENT
■
Keller, N. P.; Wang, C. C.; Oakley, B. R. Appl. Environ. Microb. 2010, 76,
2067−2074.
*
S
Supporting Information
(
16) Rutledge, P. J.; Challis, G. L. Nat. Rev. Microbiol. 2015, 13, 509−
523.
(17) Bok, J. W.; Chiang, Y.-M.; Szewczyk, E.; Reyes-Dominguez, Y.;
Davidson, A. D.; Sanchez, J. F.; Lo, H.-C.; Watanabe, K.; Strauss, J.;
Oakley, B. R.; Wang, C. C. C.; Keller, N. P. Nat. Chem. Biol. 2009, 5,
Supplementary methods, figures, tables, compound
4
(
4
(
62−464.
18) Nicolaou, K.; Koide, K.; Bunnage, M. E. Chem. - Eur. J. 1995, 1,
54−466.
19) Lampe, J. W.; Biggers, C. K.; Defauw, J. M.; Foglesong, R. J.; Hall,
AUTHOR INFORMATION
S. E.; Heerding, J. M.; Hollinshead, S. P.; Hu, H.; Hughes, P. F.;
■
Jagdmann, G. E. J. Med. Chem. 2002, 45, 2624−2643.
(20) Blin, K.; Medema, M. H.; Kazempour, D.; Fischbach, M. A.;
*
Breitling, R.; Takano, E.; Weber, T. Nucleic Acids Res. 2013, 41, W204−
W212.
(
21) Kohli, R. M.; Walsh, C. T. Chem. Commun. 2003, 297−307.
ORCID
(
22) Zaleta-Rivera, K.; Xu, C.; Yu, F.; Butchko, R. A.; Proctor, R. H.;
Hidalgo-Lara, M. E.; Raza, A.; Dussault, P. H.; Du, L. Biochemistry 2006,
5, 2561−2569.
23) Lin, S.; Van Lanen, S. G.; Shen, B. Proc. Natl. Acad. Sci. U. S. A.
009, 106, 4183−4188.
24) Li, W.; Fan, A.; Wang, L.; Zhang, P.; Liu, Z.; An, Z.; Yin, W. B.
Chem. Sci. 2018, 9, 2589−2594.
25) Jung, D. H.; Kim, E. J.; Jung, E.; Kazlauskas, R. J.; Choi, K. Y.; Kim,
B. G. Biotechnol. Bioeng. 2016, 113, 1493−1503.
26) Heleno, S. A.; Martins, A.; Queiroz, M. J.; Ferreira, I. C. Food
Notes
4
(
2
(
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(
■
We thank Jian-Yang Pan (Zhejiang University, China) for NMR
data collection and Dr. Sheng-Hua Ying (Zhejiang University,
China) for providing the SUR gene. We thank the editors at ACS
ChemWorx Authoring Services for their English language
editing of the manuscript. This work was supported by NSFC
projects (31520103901, 31370064) and by the Science and
Technology Planning Project of Zhejiang Province, China
(
Chem. 2015, 173, 501−513.
(
27) Molnar
́
, I.; Gibson, D. M.; Krasnoff, S. B. Nat. Prod. Rep. 2010, 27,
1241−1275.
(
2017C33137).
D
Org. Lett. XXXX, XXX, XXX−XXX