reported oxidations of fused thiophenes and star thiophenes
using HOF CH3CN.10 To date, a variety of different small
molecules and oligomers bearing oxygenated thiophene
rings have been synthesized and characterized.11 Thiophene
dioxide moieties have also been incorporated into conju-
gated polymer architectures.12
co-workers (Scheme 1).16 Compound 2b and other substi-
tuted thiophene 1,1-dioxides have been successfully em-
ployed as coupling partners in palladium-catalyzed Stille
reactions.8,17 However, to take advantage of widely available
aryl halides, we also envisioned a novel distannylated thio-
phene 1,1-dioxide. A previous report by Buchwald and co-
workers highlighted the potential of TBAF to convert
alkynylsilanes to alkynyl stannanes,18 and Burton illustrated
that a similar method could convert vinylsilanes to vinyl-
stannanes.19 We found that the combination of compound 1
with bis(tributyltin) oxide in the presence of TBAF produced
the desired distannylated precursor 3 (yield: 49%, Scheme 1).
3
These heterocycles have attracted attention for electron
transport,13 but to the best of our knowledge, electron
withdrawing groups have not yet been investigated as a
method to influence their electronic properties. In other
families of n-type materials such as arylene diimides,14
substitution of the conjugated core with electron-
withdrawing groups (e.g., CN) has resulted in stability
and high electron mobility.15 Inspired by the potential of
thiophene 1,1-dioxides as n-type materials, we developed a
new synthetic scheme for coupling these sulfone hetero-
cycles with electron-withdrawing groups and explored the
effects of electronic modulation on their properties.
We sought a thiophene 1,1-dioxide that could be employed
in cross-coupling reactions to attach various aryl groups.
Compound 1 can be converted to 2,5-dihalo derivatives
(2a and 2b) following a published report by Furukawa and
Scheme 1. Synthesis of Thiophene 1,1-Dioxide Precursors
(10) (a) Shefer, N.; Harel, T.; Rozen, S. J. Org. Chem. 2009, 74, 6993–
6998. (b) Shefer, N.; Rozen, S. J. Org. Chem. 2010, 75, 4623–4625. (c)
Potash, S.; Rozen, S. J. Org. Chem. 2011, 76, 7245–7248.
(11) For some recent examples, see: (a) Duan, Z.; Huang, X.; Fujii,
S.; Kataura, H.; Nishioka, Y. Chem. Lett. 2012, 41, 363–365. (b)
Afonina, I.; Skabara, P. J.; Vilela, F.; Kanibolotsky, A. L.; Forgie,
J. C.; Bansal, A. K.; Turnbull, G. A.; Samuel, I. D. W.; Labram, J. G.;
Anthopoulos, T. D.; Coles, S. J.; Hursthouse, M. B. J. Mater. Chem.
2010, 20, 1112–1116. (c) Santato, C.; Favaretto, L.; Melucci, M.; Zanelli,
A.; Gazzano, M.; Monari, M.; Isik, D.; Banville, D.; Bertolazzi, S.;
Loranger, S.; Cicoira, F. J. Mater. Chem. 2010, 20, 669–676. (d) Moss,
K. C.; Bourdakos, K. N.; Bhalla, V.; Kamtekar, K. T.; Bryce, M. R.;
Fox, M. A.; Vaughan, H. L.; Dias, F. B.; Monkman, A. P. J. Org. Chem.
2010, 75, 6771–6781. (e) Miguel, L. S.; Matzger, A. J. J. Org. Chem. 2008,
73, 7882–7888. (f) Suzuki, Y.; Okamoto, T.; Wakamiya, A.; Yamaguchi,
S. Org. Lett. 2008, 10, 3393–3396.
Table 1. Synthesis of 2,5-Bis(aryl)thiophene 1,1-Dioxides
(12) For some examples of polymers bearing thiophene 1,1-dioxide
units, see: (a) Cochran, J. E.; Amir, E.; Sivanandan, K.; Ku, S.-Y.; Seo,
J. H.; Collins, B. A.; Tumbleston, J. R.; Toney, M. F.; Ade, H.; Hawker,
C. J.; Chabinyc, M. L. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 48–
56. (b) Amir, E.; Sivanandan, K.; Cochran, J. E.; Cowart, J. J.; Ku,
S.-Y.; Seo, J. H.; Chabinyc, M. L.; Hawker, C. J. J. Polym. Sci. Part A:
Polym. Chem. 2011, 49, 1933–1941. (c) Kamtekar, K. T.; Vaughan,
H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R.
Macromolecules 2010, 43, 4481–4488. (d) Zhang, C.; Nguyen, T. H.;
Sun, J.; Li, R.; Black, S.; Bonner, C. E.; Sun, S.-S. Macromolecules 2009,
42, 663–670. (e) Melucci, M.; Favaretto, L.; Barbarella, G.; Zanelli, A.;
Camaioni, N.; Mazzeo, M.; Gigli, G. Tetrahedron 2007, 63, 11386–
ꢁ
11390. (f) Charas, A.; Morgado, J.; Martinho, J. M. G.; Alcacer, L.;
Lim, S. F.; Friend, R. H.; Cacialli, F. Polymer 2003, 44, 1843–1850. (g)
ꢁ
Beaupre, S.; Leclerc, M. Adv. Funct. Mater. 2002, 12, 192–196.
(13) (a) Dell, E. J.; Campos, L. M. J. Mater. Chem. 2012, 22, 12945–
12952. (b) Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761–1775.
ꢁ
(14) (a) Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas,
J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436–4451.
(b) Malenfant, P. R. L.; Dimitrakopoulos, C. D.; Gelorme, J. D.;
Kosbar, L. L.; Graham, T. O.; Curioni, A.; Andreoni, W. Appl. Phys.
Lett. 2002, 80, 2517–2519. (c) Gosztola, D.; Niemczyk, M. P.; Svec, W.;
Lukas, A. S.; Wasielewski, M. R. J. Phys. Chem. A 2000, 104, 6545–6551.
(d) Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W. J. Am. Chem. Soc.
2000, 122, 7787–7792.
(15) (a) Usta, H.; Facchetti, A.; Marks, T. J. Acc. Chem. Res. 2011,
€
44, 501–510. (b) Oh, J. H.; Suraru, S.-L.; Lee, W.-Y.; Konemann, M.;
Hoffken, H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W.-C.;
(16) Furukawa, N.; Hoshiai, H.; Shibutani, T.; Higaki, M.; Iwasaki,
F.; Fujihara, H. Heterocycles 1992, 34, 1085–1088.
(17) Potash, S.; Rozen, S. Chem.;Eur. J. 2013, 19, 5289–5296.
(18) Warner, B. P.; Buchwald, S. L. J. Org. Chem. 1994, 59, 5822–
5823.
(19) Xue, L.; Lu, L.; Pedersen, S. D.; Liu, Q.; Narske, R. M.; Burton,
D. J. J. Org. Chem. 1997, 62, 1064–1071.
€
€
€
Wurthner, F.; Bao, Z. Adv. Funct. Mater. 2010, 20, 2148–2156. (c) Oh,
€
J. H.; Sun, Y.-S.; Schmidt, R.; Toney, M. F.; Nordlund, D.; Konemann,
€
M.; Wurthner, F.; Bao, Z. Chem. Mater. 2009, 21, 5508–5518. (d) Jones,
B. A.; Facchetti, A.; Marks, T. J.; Wasielewski, M. R. Chem. Mater.
2007, 19, 2703–2705. (e) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.;
Marks, T. J. J. Am. Chem. Soc. 2007, 129, 15259–15278.
Org. Lett., Vol. 15, No. 20, 2013
5231