86
M. Zhu et al. / Dyes and Pigments 86 (2010) 81e86
naphthylporphyrins with benzyl ether spacers: implications for cyto-
chrome oxidase active-site modeling. Inorganic Chemistry 2001;40
4. Conclusions
c
(18):4556e62.
Novel naphthylporphyrin-functionalized platinum nano-
composites were synthesized and used successfully as the pho-
tocatalysts for hydrogen evolution without an electron relay.
The photophysical studies of naphthylporphyrin reported here
demonstrate efficient energy transfer from naphthalene to
porphyrin. Using Pt-TPPNA-100 as the photocatalyst, the total
amount of H2 produced and the apparent quantum efficiency were
[15] Saito K, Hirao T. Synthesis and characterization of porphyrins bearing four
redox-active phenylenediamine pendant groups as a dimensionally oriented
p
-conjugated system. Tetrahedron 2002;58(37):7491e501.
_
_
[16] Yenilmez HY, Özçesmeci I, Okur AI, Gül A. Synthesis and characterization of
metal-free and metallo phthalocyanines with four pendant naphthoxy-
substituents. Polyhedron 2004;23(5):787e91.
[17] Tao M, Zhou X, Jing M, Liu D, Xing J. Fluorescence and electrochemical prop-
erties of naphthylporphyrins and porphyrin-anthraquinone dyads. Dyes and
Pigments 2007;75(2):408e12.
185.5 mmol and 3.0%, respectively, after receiving UVevis irradia-
[18] Brugger PA, Cuendet P, Grätzel M. Ultrafine and specific catalysts affording
efficient hydrogen evolution from water under visible light illumination.
Journal of the American Chemical Society 1981;103(11):2923e7.
[19] Bard AJ, Fox MA. Artificial photosynthesis: solar splitting of water to hydrogen
and oxygen. Accounts of Chemical Research 1995;28(3):141e5.
[20] Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: a novel family
of reusable catalysts? Chemical Reviews 2002;102(10):3757e78.
[21] Li X, Du Y, Dai J, Wang X, Yang P. Metal nanoparticles stabilized by cubic
silsesquioxanes for catalytic hydrogenations. Catalysis Letters 2007;118
(1):151e8.
tion for 12 h. The photocatalytic activity of Pt-TPPNA was more
than two times that of Pt-naphthalene-free porphyrin under the
same reaction conditions. This study shows that the photocatalytic
activity of a Pt-porphyrin system can be significantly improved by
choosing proper peripheral functional groups of porphyrin with
a high light-harvesting capability.
[22] Dai J, Du Y, Wang F, Yang P. PtCo/Au nanocomposite: synthesis, characteriza-
tion, and magnetic properties. Physica E: Low-dimensional Systems and
Nanostructures 2007;39(2):271e6.
Acknowledgements
[23] Zhang W, Li L, Du Y, Wang X, Yang P. Gold/platinum bimetallic core/shell
nanoparticles stabilized by a Fréchet-type dendrimer: preparation and cata-
lytic hydrogenations of phenylaldehydes and nitrobenzenes. Catalysis Letters
2009;127(3):429e36.
[24] Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal
nanoparticles. The Journal of Physical Chemistry B 2002;106(32):7729e44.
[25] Thomas KG, Kamat PV. Chromophore-functionalized gold nanoparticles.
Accounts of Chemical Research 2003;36(12):888e98.
The authors gratefully appreciate the financial support of the
National Natural Science Foundation of China (20673075 and
50673070) and Ministry of Education of China, Science and Tech-
nology Research Key Project (204053).
References
[26] Guo X, An W, Shuang S, Cheng F, Dong C. Study on spectroscopic character-
ization of meso-tetrakis (4-hydroxyphenyl) porphyrin (THPP) in
b-cyclodex-
trin and its derivatives. Journal of Photochemistry and Photobiology A:
Chemistry 2005;173(3):258e63.
[1] Fischer H, Orth H. Die Chemie des Pyrrols. Leipzig: Akademische Verlag; 1934.
[2] George RG, Padmanabhan M. Studies on iron(III) and manganese(III) deriva-
tives of new meso-aryl substituted and brominated porphyrins. Transition
Metal Chemistry 2003;28(8):858e63.
[3] Flamigni L, Talarico AM, Chambron JC, Heitz V, Linke M, Fujita N, et al.
Photoinduced electron transfer in multiporphyrinic interlocked structures: the
effect of copper(I) coordination in the central site. Chemistry e A European
Journal 2004;10(11):2689e99.
[4] Hikal WM, Harmon HJ. Photocatalytic self-assembled solid porphyrin micro-
crystals from water-soluble porphyrins: synthesis, characterization and
application. Polyhedron 2009;28(1):113e20.
[5] Gust D, Moore TA, Moore AL. Mimicking photosynthetic solar energy trans-
duction. Accounts of Chemical Research 2001;34(1):40e8.
[27] Li X, Li B, Cheng M, Du Y, Wang X, Yang P. Catalytic hydrogenation of phenyl
aldehydes using bimetallic Pt/Pd and Pt/Au nanoparticles stabilized by cubic
silsesquioxanes. Journal of Molecular Catalysis A: Chemical 2008;284
(1e2):1e7.
[28] Humphrey JL, Kuciauskas D. Charge transfer enhances two-photon absorption
in transition metal porphyrins. Journal of the American Chemical Society
2006;128(12):3902e3.
[29] Wu PG, Brand L. Resonance energy transfer: methods and applications.
Analytical Biochemistry 1994;218(1):1e13.
[30] Shen L, Wang X, Li B, Jiang W, Yang P, et al. Two-photon absorption properties
of substituted porphyrins. Journal of Porphyrins and Phthalocyanines 2006;10
(3):160e6.
[6] Itoh T, Yano K, Inada Y, Fukushima Y. Photostabilized chlorophyll a in mesoporous
silica: adsorption properties and photoreduction activity of chlorophyll a. Journal
of the American Chemical Society 2002;124(45):13437e41.
[31] Li Y, Cao L, Tian H. Fluoride ion-triggered dual fluorescence switch based on
naphthalimides winged zinc porphyrin. The Journal of Organic Chemistry
2006;71(21):8279e82.
[7] Guldi DM. Biomimetic assemblies of carbon nanostructures for photochemical
energy conversion. The Journal of Physical Chemistry
B 2005;109(23):
[32] Leibowitz M. Remarks on Förster's theory of transfer of excitation energy. The
Journal of Physical Chemistry 2002;69(3):1061e2.
11432e41.
[8] Benniston AC, Harriman A. Artificial photosynthesis. Materials Today 2008;11
(12):26e34.
[33] Agarwal N. The synthesis and characterization of photonic materials
composed of substituted fluorene donors and a porphyrin acceptor. Dyes and
Pigments 2009;83(3):328e33.
[9] Wasielewski MR. Photoinduced electron transfer in supramolecular systems
for artificial photosynthesis. Chemical Reviews 1992;92(3):435e61.
[10] Hirota J, Okura I. Photoinduced intramolecular electron transfer in bisviol-
ogen-linked porphyrin in acetonitrile. The Journal of Physical Chemistry
1993;97(26):6867e70.
[11] Amao Y, Hiraishi T, Okura I. Photoinduced hydrogen evolution using water
soluble viologen-linked trisulfonatophenylporphyrins (TPPSCnV) with
hydrogenase. Journal of Molecular Catalysis A: Chemical 1997;126(1):21e6.
[12] Amao Y, Kamachi T, Okura I. Photoinduced hydrogen evolution with hydrog-
enase and water-soluble viologen-linked zinc porphyrins. Journal of Porphy-
rins and Phthalocyanines 1998;2(3):201e7.
[13] Amao Y, Okura I. Photoinduced hydrogen production with the system con-
taining water-soluble viologen-linked porphyrins and hydrogenase. Journal of
Molecular Catalysis B: Enzymatic 2002;17(1):9e21.
[14] Thrash TP, Wilson LJ. Zn(II), Ni(II), Cu(II), and Fe(III) complexes of poten-
tially bimetalating tris(pyridine- and imidazole-appended) picket-fence
[34] Yang P, Lu C, Hua N, Du Y. Titanium dioxide nanoparticles co-doped with Fe3þ
and Eu3þ ions for photocatalysis. Materials Letters 2002;57(4):794e801.
[35] Vera F, Schrebler R, Muñoz E, Suarez C, Cury P, et al. Preparation and char-
acterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin
film photocathodes. Thin Solid Films 2005;490(2):182e8.
[36] Teranishi T, Hosoe M, Tanaka T, Miyake M. Size control of monodispersed Pt
nanoparticles and their 2D organization by electrophoretic deposition. The
Journal of Physical Chemistry B 1999;103(19):3818e27.
[37] Rabek JF. Experimental methods in photochemistry and photophysics. New
York: John Wiley and Sons; 1982. p. 944e50.
[38] Hatchard CG, Parker CA. A new sensitive chemical actinometer. II. Potassium
ferrioxalate as a standard chemical actinometer. Proceedings of the Royal
Society of London. Series A, Mathematical, Physical & Engineering Sciences
1956;235:518e36.