A part of this work was conducted at Hokkaido Innovation
through Nanotechnology Support (HINTS), supported by
"Nanotechnology Network JAPAN" Program of the Ministry
of Education, Culture, Sports, Science and Technology
(MEXT), Japan and the OPEN FACILITY, Hokkaido
University Sousei Hall. This study was supported in part by
Research Fellowships of the Japan Society for the Promotion
of Science for Young Scientists.
Notes and references
1 (a) C. P. Collier, T. Vossmeyer and J. R. Heath, Annu. Rev. Phys.
Chem., 1998, 49, 371–404; (b) B. L. V. Prasad, C. M. Sorensen and
K. J. Klabunde, Chem. Soc. Rev., 2008, 37, 1871–1883;
(c) D. V. Talapin, ACS Nano, 2008, 2, 1097–1100.
2 J. Park, E. Kang, S. Son, H. Park, M. Lee, J. Kim, K. Kim,
H. J. Noh, J. H. Park, C. Bae, J. G. Park and T. Hyeon, Adv.
Mater., 2005, 17, 429–434.
3 (a) E. Shibu, M. Habeeb Muhammed, K. Kimura and T. Pradeep,
Nano Res., 2009, 2, 220–234; (b) E. S. Shibu, K. Kimura and
T. Pradeep, Chem. Mater., 2009, 21, 3773–3781.
4 (a) K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda and
Y. Kanemitsu, Phys. Rev. Lett., 2008, 100, 207404;
(b) C. Rockstuhl and T. Scharf, J. Microsc. (Paris), 2008, 229,
281–286; (c) A. L. Rogach, Angew. Chem., Int. Ed., 2004, 43,
148–149.
Fig. 4 STEM image of a cast-film of FTEG-AuNPs (core diameter: 5 nm)
dissolved in isopropanol. SEM mode overview and dark field mode
detail (left inset) images were shown. The right small inset shows a
Fourier transformation image of the overview image.
5 (a) S. I. Lim and C.-J. Zhong, Acc. Chem. Res., 2009, 42, 798–808;
(b) S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand,
G. C. Schatz and C. A. Mirkin, Nature, 2008, 451, 553;
(c) D. Nykypanchuk, M. M. Maye, D. van der Lelie and
O. Gang, Nature, 2008, 451, 549.
6 M. Achermann, M. A. Petruska, S. A. Crooker and V. I. Klimov,
J. Phys. Chem. B, 2003, 107, 13782–13787.
7 (a) J. Cho and F. Caruso, Chem. Mater., 2005, 17, 4547–4553;
(b) M.-H. Lin, H.-Y. Chen and S. Gwo, J. Am. Chem. Soc., 2010,
132, 11259–11263.
Fig. 5 Hypothetical mechanism for the formation of the close-packed
structure of FTEG-AuNPs during the fast drying process. The arrows
indicate the motion (rearrangement) of nanoparticles in the concen-
trated state due to strong lubricating property of FTEG-AuNPs.
8 (a) E. Rabani, D. R. Reichman, P. L. Geissler and L. E. Brus,
Nature, 2003, 426, 271–274; (b) H. Yao, H. Kojima, S. Sato and
K. Kimura, Langmuir, 2004, 20, 10317–10323; (c) S. He, J. Yao,
P. Jiang, D. Shi, H. Zhang, S. Xie, S. Pang and H. Gao, Langmuir,
2001, 17, 1571–1575; (d) M. Grzelczak, J. Vermant, E. M. Furst
and L. M. Liz-Marzaan, ACS Nano, 2010, 4, 3591–3605;
(e) A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa and
C. B. Murray, Nature, 2010, 466, 474–477.
9 (a) T. P. Bigioni, X.-M. Lin, T. T. Nguyen, E. I. Corwin,
T. A. Witten and H. M. Jaeger, Nat. Mater., 2006, 5, 265–270;
(b) C. J. Kiely, J. Fink, M. Brust, D. Bethell and D. J. Schiffrin,
Nature, 1998, 396, 444–446.
10 E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski,
M. Haase and H. Weller, J. Am. Chem. Soc., 2002, 124,
11480–11485.
11 X. M. Lin, H. M. Jaeger, C. M. Sorensen and K. J. Klabunde,
J. Phys. Chem. B, 2001, 105, 3353–3357.
state to a crystal state. To reach a thermodynamically stable,
close-packed state, each nanoparticle needs to move freely
during the final stage of solvent drying (Fig. 5). The fluorinated
nanoparticles provide weak particle–particle interactions, thus
there is a low energetic barrier to the rearrangement of packing
during the drying process, leading to thermodynamically
stable, close-packed 3D structures within a short period.
Experiments to provide the evidence of our hypothesis are
currently underway.
In summary, we have shown the synthesis of FTEG-stabilized
AuNPs that are dispersed homogeneously in polar organic
solvents and are stable even at high concentrations.
12 (a) M. Fujita, H. Nishikawa, T. Okubo and Y. Yamaguchi,
Jpn. J. Appl. Phys., 2004, 43, 4434–4442; (b) M. Hu, S. Chujo,
H. Nishikawa, Y. Yamaguchi and T. Okubo, J. Nanopart. Res.,
2004, 6, 479–487.
Casting of the dispersion gave a 3D-superlattice with a highly
regular hexagonal-packed structure, whereas non-fluorinated
TEG-AuNPs produced only amorphous aggregations under
the same conditions. Since this method did not need conven-
tional slow-evaporation procedure, the FTEG-coating of
nanoparticles afford a useful and versatile approach to
the production of various metal nanoparticle superlattices
compatible with the use of a simple wet-process, such as spin
coating or inkjet printing.
13 (a) T. Yonezawa, S. Onoue and N. Kimizuka, Adv. Mater., 2001,
13, 140–142; (b) T. Yonezawa, S.-y. Onoue and N. Kimizuka,
Langmuir, 2001, 17, 2291–2293; (c) A. Dass, R. Guo, J. B. Tracy,
R. Balasubramanian, A. D. Douglas and R. W. Murray, Langmuir,
2008, 24, 310–315.
14 (a) A. J. Gellman, Curr. Opin. Colloid Interface Sci., 1998, 3,
368–372; (b) Y. Yun, E. Broitman and A. J. Gellman, Langmuir,
2006, 23, 1953–1958.
15 K. Niikura, T. Nishio, H. Akita, Y. Matsuo, R. Kamitani,
K. Kogure, H. Harashima and K. Ijiro, ChemBioChem, 2007, 8,
379–384.
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 8977–8979 8979