2214
Y. Xu et al. / Bioorg. Med. Chem. 17 (2009) 2210–2214
centration did not exceed 0.2%. Cells were exposed continuously to
test compounds for 24 or 72 h at which times relative viable cell
number per well was determined as previously described.33
Acknowledgments
This work was supported by a grant from USDA-CSREES and
this support is gratefully acknowledged. Ms. Betsy Lewis is thanked
for her assistance with fabricating the aeroponic chambers.
3.7. Detection of actin aggregation
Cells were seeded in 8-well chamber slides at a density of
2 ꢂ 104 cells per well and allowed to adhere for 48 h. Compounds
1 and 2 were freshly prepared as 5 mM stock solutions in DMSO
References and notes
1. Anbalagan, K.; Sadique, J. Indian J. Exp. Biol. 1981, 19, 245–249.
2. Ziauddin, M.; Phansalkar, N.; Patki, P.; Diwanay, S.; Patwardhan, B. J.
Ethnopharmacol. 1996, 50, 69–76.
3. Dhuley, J. N. J. Ethnopharmacol. 1997, 58, 15–20.
4. Dhuley, J. N. J. Ethnopharmacol. 2000, 70, 57–63.
5. Dhuley, J. N. J. Ethnopharmacol. 1998, 60, 173–178.
6. Widodo, N.; Tagaki, Y.; Shrestha, B. G.; Ashii, T.; Kaul, S. C.; Wadha, R. Cancer
7. Mishra, L. C.; Singh, B. B.; Dagenais, S. Altern. Med. Rev. 2000, 5, 334–346.
8. Gupta, G. L.; Rana, A. C. Pharmacog. Rev. 2007, 1, 129–136.
9. Kumar, P.; Kushwaha, R. A. Asian J. Chem. 2006, 18, 1401–1404.
10. Devi, P. U.; Sharada, A. C.; Solomon, F. E. Indian J. Exp. Biol. 1993, 31, 607–611.
11. Sharada, A. C.; Solomon, F. E.; Devi, P. U. Int. J. Pharmacog. 1993, 31, 205–212.
12. Kupchan, S. M.; Doskotch, R. W.; Bollinger, P.; McPhail, A. T.; Sim, G. A.;
Renauld, J. A. S. J. Am. Chem. Soc. 1965, 87, 5805–5806.
and applied to cells at a final concentration of 4 lM in RPMI culture
medium supplemented with 10% fetal bovine serum, GlutamaxTM,
and penicillin/streptomycin. Control wells were treated with an
equal volume of DMSO, not exceeding 0.2% in culture media. Cells
were incubated for 4 or 24 h in the continuous presence of the indi-
cated compounds, then washed twice with PBS, fixed with 4% para-
formaldehyde/PBS (pH 7.6), and permeabilized with 0.1% Triton-X
100/PBS. Slides were blocked for 30 min at room temperature with
10% (v/v) goat serum and 1% bovine serum albumin (w/v) in PBS,
then incubated with AlexaFluor 488-conjugated phalloidin to stain
F-actin (Molecular Probes). To visualize nuclei, cells were counter-
13. Shohat, B.; Gitter, S.; Abraham, A.; Lavie, D. Cancer Chemother. Rep. 1967, 51,
271–276.
14. Devi, P. U.; Sharada, A. C.; Solomon, F. E. Cancer Lett. 1995, 95, 189–193.
15. Shohat, B.; Joshua, H. Int. J. Cancer 1971, 8, 487–496.
stained with DAPI (1 lg/mL) in PBS for 3 min. After extensive
washing, cells were visualized using an Olympus IX71 microscope
with 100ꢂ objective and identical exposure conditions.
16. Yang, H.; Shi, G.; Dou, Q. P. Mol. Pharmacol. 2007, 71, 426–437.
17. Falsey, R. R.; Marron, M. T.; Gunaherath, G. M. K. B.; Shirahatti, N.; Mahadevan,
D.; Gunatilaka, A. A. L.; Whitesell, L. Nat. Chem. Biol. 2006, 2, 33–38.
18. Bargagna-Mohan, P.; Hamza, A.; Kim, Y. E.; Ho, Y. K.; Mor-Vaknin, N.;
Wendschlag, N.; Liu, J. J.; Evans, R. M.; Markovitz, D. M.; Zhan, C. G.; Kim, K.
B.; Mohan, R. Chem. Biol. 2007, 14, 623–634.
19. Kaileh, M.; Vanden, B. W.; Heyerick, A.; Horion, J.; Piette, J.; Libert, C.; De
Keukeleire, D.; Essawi, T.; Haegeman, G. J. Biol. Chem. 2007, 282, 4253–4264.
20. Sen, N.; Banerjee, B.; Das, B. B.; Ganguly, A.; Sen, T.; Pramanik, S.;
Mukhopadhyay, S.; Majumder, H. K. Cell Death Differ. 2007, 14, 358–367.
21. Srinivasan, S.; Ranga, R. S.; Burikhanov, R.; Han, S.-S.; Chendil, D. Cancer Res.
2007, 67, 246–253.
22. Fuska, J.; Fuskova, A.; Rosazza, J. P.; Nicholas, A. W. Neoplasma 1984, 31, 31–36.
23. Dhar, R. S.; Verma, V.; Suri, K. A.; Sangwan, R. S.; Satti, N. K.; Kumar, A.; Tuli, R.;
Qazi, G. N. Phytochemistry 2006, 67, 2269–2276.
24. Hayden, A. L. HortScience 2006, 41, 536–553.
25. Pelletier, S. W.; Gebeyehu, G.; Nowacki, J.; Mody, N. V. Heterocycles 1981, 15,
317–320.
26. Anjaneyulu, A. S. R.; Rao, D. S.; Lequesne, P. W.. In Studies in Natural Products
Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, 1998; vol. 20,
pp 135–261.
27. Misra, L.; Lal, P.; Sangwan, R. S.; Sangwan, N. S.; Uniyal, G. C.; Tuli, R.
Phytochemistry 2005, 66, 2702–2707.
28. Whitesell, L.; Lindquist, S. L. Nat. Rev. Cancer 2005, 5, 761–772.
29. Lee, W. C.; Lin, K. Y.; Chen, C. M.; Chen, Z. T.; Liu, H. J.; Lai, Y. K. J. Cell Physiol.
1991, 149, 66–76.
30. Dai, C.; Whitesell, L.; Rogers, A. B.; Lindquist, S. Cell 2007, 130, 1005–1018.
31. Balch, W. E.; Morimoto, R. I.; Dillin, A.; Kelley, J. W. Science 2008, 319, 916–919.
32. The aeroponic nutrient solution was made up by mixing solutions A and B
3.8. Heat-shock induction
Immortalized mouse embryo fibroblasts derived from homozy-
gous Hsf1 knockout mice or their wild type littermates were gener-
ously provided by I. J. Benjamin.34 Cells were exposed overnight to
equitoxic concentrations of 1 or the known heat-shock inducing
Hsp90 inhibitor geldanamycin. Whole cell lysates were prepared
in non-ionic detergent buffer and immunoblotted for relative levels
of Hsp72, a highly inducible member of the Hsp70 family of molec-
ular chaperones, using monoclonal antibody C92F3A-5 (StressMarq
Biosciences, Victoria, BC). Reactivity was detected using peroxidase-
conjugatedsecondary antibodyand chemiluminescentdetection. To
evaluate the relative ability of compounds to induce a heat-shock re-
sponse at the transcriptional level, a reporter cell line was used as
previouslydescribed.35 Thesecellsare stablytransducedwitha plas-
mid encoding enhanced green fluorescent protein (EGFP) under the
control of a minimal heat-shock response element derived from the
promoter region of the human Hsp70B gene. They demonstrate a ro-
bust, concentration-dependent fluorescent response to known heat-
shock modulating drugs such as Hsp90 inhibitors and can be used as
a sensitive and specific system to non-destructively monitor induc-
tion of the heat-shock response in live cells.
prepared and mixed as follows: Solution
(0.579 g/L), CaCl2ꢄ6H2O (0.278 g/L), 10% Fe-EDDHA (0.03 g/L) and water;
Solution
consisted of KH2PO4 (0.24 g/L), K2SO4 (0.193 g/L), MgSO4ꢄ7H2O
(0.6 g/L), H3BO3 (0.003 g/L), 20% CuSO4 (0.003 g/L), 20% MnSO4?H2O (0.004 g/
A
consisted of Ca(NO3)2ꢄ4H2O
B
3.9. Conversion of 2,3-dihydrowithaferin A-3b-O-sulfate (1) to
withaferin A (2) in cell culture media
L), Na2MoO4ꢄ2H2O (0.001 g/L), 20% ZnSO4ꢄ7H2O (0.004 g/L). Solution
A
(900 mL) and solution B (900 mL) were added to 140 L of water and mixed
thoroughly and if necessary the pH of the solution adjusted to 5.6–6.0 with
citric acid or KOH.
Stock solutionsof 1 in DMSO(50
medium (950 L) to achieve the indicated starting concentration,
mixed thoroughly and the solution incubated in a CO2 incubator at
37 °C. Aliquots (100 L) were withdrawn at 4, 16, and 24 h and sub-
jected to HPLC analysis for 1 (RRT = 18.5 min) and 2 (RRT = 23.5 min)
m) with gradient
lL)were diluted into cellculture
l
33. Wijeratne, E. M. K.; Turbyville, T. J.; Zhang, Z.; Bigelow, D.; Pierson, L. S., III;
VanEtten, H. D.; Whitesell, L.; Canfield, L. M.; Gunatilaka, A. A. L. J. Nat. Prod.
2003, 66, 1567–1573.
34. McMillan, D. R.; Xiao, X.; Shao, L.; Graves, K.; Benjamin, I. J. J. Biol. Chem. 1998,
273, 7523–7528.
35. Turbyville, T. J.; Wijeratne, E. M. K.; Liu, M. X.; Burns, A. M.; Seliga, C. J.;
Luevano, L. A.; David, C. L.; Faeth, S. H.; Whitesell, L.; Gunatilaka, A. A. L. J. Nat.
Prod. 2006, 69, 178–184.
36. Khajuria, R. K.; Suri, K. A.; Gupta, R. K.; Satti, N. K.; Amina, M.; Suri, O. P.; Qazi,
G. N. J. Sep. Sci. 2004, 27, 541–546.
l
on a Kromasil C18 RP column (250 ꢂ 4.6 mm, 5
l
elution using 40–100% aqueous MeOH and using an ELSD detector.
An external standard curve method was used to calculate the con-
centration of each compound in the sampled aliquots.36