Journal of the American Chemical Society
Article
mercury lamp and a cutoff filter with 50% transmission at 530 nm.
Irradiation at λ = 450 nm was performed by using LED source. After
annealing at 25 K for 10 min the matrices were cooled back to 3 K.
The experiments in LDA ice matrix were performed in the same
manner by replacing the argon with water. FTIR spectra were recorded
in the range between 400 and 4000 cm−1 with 0.5 cm−1 resolution.
Matrix EPR spectra were recorded with a Bruker ELEXSYS 500 X-
band spectrometer. Matrix UV−vis spectra were recorded with a
Varian Cary 5000 UV−vis-NIR spectrophotometer in the range of
200−800 nm with a resolution of 0.1 nm.
Computational Details. All gas-phase DFT geometry optimiza-
tions and frequency calculations were carried out using the BLYP
functional33−35 with D3 empirical dispersion correction36 and the
def2-TZVP basis set. The TURBOMOLE program (version 6.4)37 was
employed.
QM MD, QM/MM MD simulations and QM/MM optimizations
were performed using the program ChemShell38,39 as an interface to
TURBOMOLE (version 6.4) and CHARMM 31b1.40 QM MD
simulations were conducted at the BLYP-D3/def2-SVP level of theory,
while QM/MM MD simulations were carried out at the BLYP-D3/
def2-SVP//CHARMM level (10 ps) with a time step of 2 fs under
NVT conditions at temperatures of 25 K (Ar simulations), 3 K (gas
phase and water simulations), and 200 K (water simulations). The
electrostatic interactions were treated using the PME method with a
cutoff distance of 1.2 nm.41 For the QM/MM MD simulations, the
molecules of the QM regions (see below) were placed in boxes of
argon or water (15 Å box padding). Before the QM/MM MD
production runs, the QM atoms were kept frozen, while the MM
regions were allowed to move freely for 5 ns under NPT conditions.
A total of 12 QM MD and QM/MM MD simulations of the
following systems were performed: (1) QM MD: S-1···5H2O and T-
1···5H2O in the gas phase at 3 K; and (2) QM/MM MD: S-1, T-1, S-
1···H2O, and T-1···H2O (QM regions) in a box of explicit Ar at 25 K;
S-1···H2O and T-1···H2O (QM regions) in a box of explicit water at 3
K; with S-1···5H2O and T-1···5H2O as QM regions in a water box at 3
K; with S-1···5H2O as QM region in a box of explicit water at 200 K
and with benzhydryl cation-2 as QM region in a box of water at 3 K.
Ten snapshots were taken from each of the MD simulations and
reoptimized at the BLYP-D3/def2-TZVP//CHARMM level of theory.
Zero-point energies were computed based on harmonic frequency
calculations.
REFERENCES
■
(1) Olah, G. A. J. Org. Chem. 2001, 66, 5943.
(2) Olah, G. A. Angew. Chem., Int. Ed. 1973, 12, 173.
(3) Phan, T. B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. 2006,
45, 3869.
(4) Mayr, H.; Ofial, A. R. Angew. Chem., Int. Ed. 2006, 45, 1844.
(5) Phan, T. B.; Breugst, M.; Mayr, H. Angew. Chem. 2006, 118,
3954.
(6) Mayr, H.; Ofial, A. R. Angew. Chem. 2006, 118, 1876.
(7) Peon, J.; Polshakov, D.; Kohler, B. J. Am. Chem. Soc. 2002, 124,
6428.
(8) Deno, N. C.; Jaruzelski, J. J.; Schriesheim, A. J. Am. Chem. Soc.
1955, 77, 3044.
(9) Kirmse, W. Justus Liebigs Ann. Chem. 1963, 666, 9.
(10) Kirmse, W. Angew. Chem. 1963, 75, 678.
(11) Kirmse, W.; Kilian, J.; Steenken, S. J. Am. Chem. Soc. 1990, 112,
6399.
(12) Eisenthal, K. B.; Turro, N. J.; Aikawa, M.; Butcher, J. A., Jr.;
DuPuy, C.; Hefferon, G.; Hetherington, W.; Korenowski, G. M.;
McAuliffe, M. J. J. Am. Chem. Soc. 1980, 102, 6563.
(13) Eisenthal, K. B.; Moss, R. A.; Turro, N. J. Science 1984, 225,
1439.
(14) Costa, P.; Sander, W. Angew. Chem., Int. Ed. 2014, 53, 5122.
(15) Crespo-Otero, R.; Bravo-Rodriguez, K.; Roy, S.; Benighaus, T.;
Thiel, W.; Sander, W.; Sanchez-Garcia, E. ChemPhysChem 2013, 14,
805.
(16) Mardyukov, A.; Sanchez-Garcia, E.; Crespo-Otero, R.; Sander,
W. Angew. Chem., Int. Ed. Engl. 2009, 48, 4804.
(17) Crespo-Otero, R.; Sanchez-Garcia, E.; Suardiaz, R.; Montero, L.
A.; Sander, W. Chem. Phys. 2008, 353, 193.
(18) Sander, W.; Roy, S.; Polyak, I.; Ramirez-Anguita, J. M.; Sanchez-
Garcia, E. J. Am. Chem. Soc. 2012, 134, 8222.
(19) Tulk, C. A.; Benmore, C. J.; Urquidi, J.; Klug, D. D.; Neuefeind,
J.; Tomberli, B.; Egelstaff, P. A. Science 2002, 297, 1320.
(20) Shalit, A.; Perakis, F.; Hamm, P. J. Phys. Chem. B 2013, 117,
15512.
(21) Low, F.; Amann-Winkel, K.; Loerting, T.; Fujara, F.; Geil, B.
Phys. Chem. Chem. Phys. 2013, 15, 9308.
(22) Ammer, J.; Sailer, C. F.; Riedle, E.; Mayr, H. J. Am. Chem. Soc.
2012, 134, 11481.
(23) Sailer, C. F.; Thallmair, S.; Fingerhut, B. P.; Nolte, C.; Ammer,
J.; Mayr, H.; Pugliesi, I.; de Vivie-Riedle, R.; Riedle, E. ChemPhysChem
2013, 14, 1423.
(24) Ley, D.; Gerbig, D.; Schreiner, P. R. Org. Biomol. Chem. 2012,
10, 3781.
(25) McMahon, R. J. Science 2003, 299, 833.
(26) Gudipati, M. S. J. Phys. Chem. A 2004, 108, 4412.
(27) Gudipati, M. S.; Allamandola, L. J. Astrophys. J. 2004, 615, L177.
(28) Gudipati, M. S.; Allamandola, L. J. J. Phys. Chem. A 2006, 110,
9020.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis of precursors, extended computational methods,
additional spectroscopic data (figures and tables) of the
experiments in argon and water matrix, optimized structures
of computed compounds. This material is available free of
(29) Gudipati, M. S.; Allamandola, L. J. Astrophys. J. 2006, 638, 286.
(30) Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2000, 39, 2014.
(31) Winkler, M.; Sander, W. J. Org. Chem. 2006, 71, 6357.
(32) Misic, V.; Piech, K.; Bally, T. J. Am. Chem. Soc. 2013, 135, 8625.
(33) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(34) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(35) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett.
1989, 157, 200.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
(36) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.
2010, 132, 154104.
ACKNOWLEDGMENTS
(37) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem.
̈
̈
̈
■
Phys. Lett. 1989, 162, 165.
This work was supported by the Cluster of Excellence RESOLV
(EXC 1069) funded by the Deutsche Forschungsgemeinschaft
(DFG). E.S.-G. acknowledges a Liebig Stipend of the Fonds der
Chemischen Industrie and the support of the Collaborative
Research Center SFB1093 funded by the DFG. We thank Dr.
Murthy Gudipati for sharing his expertise in generating
amorphous water ice matrices.
(39) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.;
Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.;
Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers,
S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi,
A.; Schafer, A.; Lennartz, C. J. Mol. Struct. THEOCHEM 2003, 632, 1.
E
dx.doi.org/10.1021/ja507894x | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX