Full Papers
doi.org/10.1002/open.202000318
ChemistryOpen
1
[
7
Bis-imi][HNO ] : H NMR (500 MHz, D O) δ 9.18 (s, 2H), 7.75 (s, 2H), Acknowledgements
3
2
2
13
.56 (s, 2H), 6.74 (s, 2H); C NMR (126 MHz, D O) δ 136.23 (s), 121.39
2
(
s), 121.12 (s), 58.66 (s). Elem. Anal.: C, 30.65 (30.66); H, 3.67 (3.68);
We acknowledge the financial support for this study by the
National Natural Science Foundation of China (Grant
Nos. 21975070, 21776068).
N, 30.66 (30.65); O, 35.02 (35.01).
1
[PEimi][HNO ] : H NMR (500 MHz, D O) δ 8.91 (s, 4H), 7.58 (s, 8H),
3
1
4
2
3
4
.87 (s, 8H); C NMR (126 MHz, D O) δ 136.86 (s), 123.04 (s), 121.36
2
(
(
s), 50.69 (s), 42.16 (s); Elem. Anal.(calc.): C, 34.73 (34.70); H, 4.15
4.11); N, 28.47 (28.56); O, 32.65 (32.63).
Conflict of Interest
1
[
4
(
PEimi][H SO ] : H NMR (500 MHz, D O) δ 8.94 (s, 4H), 7.57 (s, 8H),
2
4 4
3
2
.87 (s, 8H); 1 C NMR (126 MHz, D O) δ 136.83 (s), 123.06 (s), 121.27
2
The authors declare no conflict of interest.
s), 50.76 (s), 42.01 (s); Elem. Anal.: C, 28.04 (28.02); H, 3.88 (3.87); N,
15.40 (15.38); O, 35.11 (35.13); S, 17,57 (17.63).
1
Keywords: tetraimidazolium salts
·
green chemistry
·
[
4
(
PEimi][H PO ] : H NMR (500 MHz, D O) δ 8.84 (s, 4H), 7.57 (s, 8H),
3
4 4
2
1
3
isomerization reactions
catalysis
·
Perillyl alcohol homogeneous
·
.85 (s, 8H); C NMR (126 MHz, D O) δ 136.78 (s), 122.97 (s), 121.54
s), 50.70 (s), 42.02 (s); Elem. Anal.: C, 28.02 (28.03); H,4.40 (4.43); N,
2
15.40 (15.38); O, 35.16 (35.14); P, 17.02 (17.07).
1
[
9
PEimi][HCl] : H NMR (500 MHz, D O) δ 8.85 (s, 4H), 7.48 (d, J=
4
2
13
[1] S. Shojaei, A. Kiumarsi, A. R. Moghadam, J. Alizadeh, H. Marzban, S.
Ghavami, Natural Products and Cancer Signaling: Isoprenoids, Polyphenols
and Flavonoids, F. Tamanoi, S. Bathaie, 2014, pp. 12.
.1 Hz, 8H), 4.67 (s, 8H); C NMR (126 MHz, D O) δ 136.81 (s), 123.12
2
(
5
s), 121.35 (s), 50.77 (s), 42.15 (s); Elem. Anal.: C, 42.31 (42.34); H,
.03 (5.02); N, 23.22 (23.24); Cl, 29.44 (29.40).
[
2] O. D. L. Torre, M. Renz, A. Corma, Appl. Catal. A 2010, 380, 165–171.
1
[3] L. V. Il’ina, S. Y. Kurbakova, K. P. Volcho, N. F. Salakhutdinov, V. I. Anikeev,
J. Saudi Chem. Soc. 2011, 15, 313–317.
[PEimi][CF SO H] : H NMR (500 MHz, D O) δ 8.94 (s, 4H), 7.57 (s,
3
3
4
2
1
3
8
H), 4.87 (s, 8H); C NMR (126 MHz, D O) δ 136.83 (s), 123.06 (s),
2
[
4] P. Mäki-Arvela, N. Kumar, S. F. Diáz, A. Aho, M. Tenho, J. Salonen, A. R.
Leino, K. Kordás, P. Laukkanen, J. Dahl, I. Sinev, T. Salmi, D. Y. Murzin, J.
Mol. Catal. A 2013, 366, 228–237.
1
21.27 (s), 50.76 (s), 42.01 (s); Elem. Anal.: C, 26.95 (26.93); H, 2.57
(
(
2.58); N, 11.95 (11.96); O, 20.47 (20.50); S, 13.70 (13.69); F, 24.36
24.34).
[
Catalyst Testing
[7] E. Vyskočilová, M. Malý, A. Aho, J. Krupka, L. Červený, React. Kinet. Mech.
Catal. 2016, 118, 235–246.
The isomerization reaction was carried out in a 10 ml magnetically
stirred round-bottom flask. In a typical experiment, the catalyst
[
9] Q. H. Li, L. L. Kuang, H. J. Yuan, J. Nat. Sci. Hunan Normal Univ. 2008, 31,
4–77.
(
5 mol% β-pinene oxide), β-pinene oxide (5 mmol) and solvent
7
(
2.5 ml) were added into the flask. The reaction was stirred at 40°C
[
for 80 min. After that, the products were measured by a gas
chromatograph (Shimadzu GC 2014, Japan) with HP-5 column
[
[
(
30.0 m×0.50 mm×0.32 μm) and verified by GC-MS (Shimadzu
GCMS-QP2010, Japan). Test Conditions: the carrier gas was N , the
2
split was 40:1, the column temperature was 130°C for 20 min.
Because the response factor of the isomerization products was
similar to the β-Pinene epoxide, and the polymerization products
were not detected, normalization of areas was used to quantify the
conversion of the substrates and the selectivity of the products. The
catalyst was recovered by adjusting the polarity of the solvent
system: it was poured in a large amount of ethyl acetate until the
solution remained cloudy, then centrifuged, washed with ethyl
acetate and reused. The catalyst activity was evaluated from the
conversion of β-pinene oxide (BPO) and the selectivity of perillyl
alcohol (PA), which is defined as follows:
[
[
[
19] Z. C. He, Z. M. Wu, Y. F. Li, Q. Wang, L. S. Pan, Y. J. Liu, J. Mole. Catal.
China) 2014, 28, 536–543.
[
[
[
(
Cohen, W. T. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506.
moles of reacted BPO
moles of added BPO
BPO Conversion ð%Þ ¼
PA Selectivity ð%Þ ¼
� 100
moles of PA
moles of reacted BPO
[22] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2007, 120, 215–241.
� 100
[
[
23] A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
24] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,
M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B.
Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D.
Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark,
J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
moles of BPO
moles of catalyst � reaction time
TOF ðSÀ 1Þ ¼
ChemistryOpen 2021, 10, 477–485
484
© 2021 The Authors. Published by Wiley-VCH GmbH