C O M M U N I C A T I O N S
6
Table 1. Thermodynamic Parameters for Duplex Formation
significant DNA adduct O -BnG. This is the first report of a stable
DNA base pair comprised of a biologically relevant bulky DNA
adduct and a designed nucleoside partner. Synthetic nucleosides
that base pair specifically with DNA adducts have diverse potential
utility in the study of the impacts of chemical modification on DNA
biology and chemistry. Continued studies are aimed at gaining a
detailed understanding of the physical and structural origin of
adduct:probe base-pair stability, the design of more selective
analogues, and applications as structural probes.
duplex
∆
H (kcal/mol)
∆
S (cal/K
‚
mol)
∆G
298K (kcal/mol)
∆∆G
298K (kcal/mol)
D1
D2
D6
-85.9
-67.2
-79.2
-232
-195
-218
-17.7
-9.1
-14.2
8.6
3.5
Acknowledgment. We acknowledge the NIH (CA108604) for
support. J.G. thanks the University of Minnesota Cancer Center
for a postdoctoral fellowship. We thank Dr. Besik Kankia for helpful
suggestions, and Dr. Yuk Sham, University of Minnesota Super-
computing Institute, for assistance with molecular models. Crystal-
lographic analysis was carried out by Dr. Victor G. Young, Jr. at
the X-ray Laboratory of the University of Minnesota.
Figure 3. Stacking interactions in 2 indicated in X-ray crystal structure
(unit cell dimensions: a ) 6.5 Å; b ) 8.7 Å; c ) 23.5 Å).
A goal for potential biological applications is that dNap distin-
guish between isomeric adduct structures resulting from competing
positions of base alkylation. We compared damaged oligonucle-
Supporting Information Available: Syntheses, NMR data, thermal
denaturation studies, crystallographic analysis, Job plots, and CD
spectra. This material is available free of charge via the Internet at
http://pubs.acs.org.
6
2
otides that contained O -BnG or the isomeric adduct N -ben-
2
2
zyldeoxyguanosine (7, N -BnG). The N -BnG:dNap pair was less
stable, but the difference was small (T of 57.4 °C, 1.9 °C lower than
m
References
6
that of O -BnG:dNap). Many known synthetic nucleosides form
stable self-pairs in duplex DNA.3
e-g
(1) (a) Singer, B.; Runberger, D. Molecular Biology of Mutagens &
Carcinogens; Plenum Press: New York, 1983. (b) Phillips, D. H. The
Formation of DNA Adducts. In The Cancer Handbook; Alison, M. R.,
Ed.; Nature Publishing Group: London, 2002; pp 293-306.
m
Similarly, the T for a duplex
containing dNap:dNap is 60.3 °C, essentially as stable as dG:dC.
Thermodynamic relationships for key base pairs were evaluated
further by a van’t Hoff analysis (Table 1).12 The relative free-energy
changes parallel those observed for T values, with high T values
m m
associated with high free-energy changes upon duplex formation.
Entropic contributions were similar for each example.
To verify whether the modified oligonucleotides formed strictly
duplex structures, a titration study (Job plot) was performed by
measuring UV absorbances at 260 nm for various molar ratios of
the single strands. These data (Figure S3-S5, Supporting Informa-
tion) clearly indicate 1:1 stoichiometric binding. To probe the
helicity of the key duplexes in Figure 2, circular dichroism (CD)
spectra of duplexes D1, D2, and D6 were obtained. The resulting
CD spectra (Figure S6, Supporting Information) display positive
signals at 271-274 nm and negative signals at 248-251 nm,
indicating a B-form conformation of DNA duplexes. Similar
patterns of CD spectra suggest that the synthetic base pair does
not significantly perturb duplex conformation.
(
2) (a) Singer, B.; Essigmann, J. M. Carcinogenesis 1991, 12, 949-955. (b)
Loechler, E. L. Carcinogenesis 1996, 17, 895-902. (c) Hecht, S. S. Nat.
ReV. Cancer 2003, 3, 733-744.
(3) (a) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature
1
990, 343, 33-37. (b) Moran, S.; Ren, R. X. F.; Rumney, S.; Kool, E. T.
J. Am. Chem. Soc. 1997, 119, 2056-2057. (c) Kool, E. T. Acc. Chem.
Res. 2002, 35, 936-943. (d) Benner, S. A. Acc. Chem. Res. 2004, 37,
784-797. (e) Wu, Y.; Ogawa, A. K.; Berger, M.; McMinn, D. L.; Schultz,
P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2000, 122, 7621-7632. (f)
Ogawa, A. K.; Wu, Y.; McMinn, D. L.; Liu, J.; Schultz, P. G.; Romesberg,
F. E. J. Am. Chem. Soc. 2005, 122, 3274-3287. (g) Henry, A. A.; Olsen,
A. G.; Matsuda, S.; Yu, C.; Geierstanger, B. H.; Romesberg, F. E. J. Am.
Chem. Soc. 2005, 126, 6923-6931.
4) (a) Bloom, L. B.; Otto, M. R.; Beechem, J. M.; Goodman, M. F.
Biochemistry 1993, 32, 11247-11258. (b) Matray, T. J.; Kool, E. T.
Nature 1999, 399, 704-708. (c) Sun, L.; Xhang, K.; Zhou, L.; Hohler,
P.; Kool, E. T.; Yuan, G.; Wang, Z.; Taylor, J. S. Biochemistry 2003, 42,
(
9
431-9437. (d) Zhang, X. M.; Lee, I.; Zhou, X.; Berdis, A. J. J. Am.
Chem. Soc. 2006, 128, 143-149. (e) Mizukami, S.; Kim, T. W.; Helquist,
S. A.; Kool, E. T. Biochemistry 2006, 45, 2772-2778.
(
5) Gao, J.; Liu, H.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 11826-11831.
(6) (a) Hirao, I.; Ohtsuki, T.; Mitsui, T.; Yokoyama, S. J. Am. Chem. Soc.
2
000, 122, 6118-6119. (b) Mitsui, T.; Kitamura, A.; Kimoto, M.; To,
T.; Sato, A.; Hirao, I.; Yokoyama, S. J. Am. Chem. Soc. 2003, 125, 5298-
5307. (c) Kimoto, M.; Endo, M.; Mitsui, T.; Okuni, T.; Hirao, I.;
Yokoyama, S. Chem. Biol. 2004, 11, 47-55.
The relative stereochemistry of free dNap was assigned on the
basis of NOESY correlations (obtained from 5, Supporting Informa-
tion) and confirmed by X-ray analysis of the free nucleoside 2
(
7) Hirao, I.; Kimoto, M.; Mitsui, T.; Fujiwara, T.; Kawai, R.; Sato, A.;
Harada, Y.; Yokoyama, S. Nat. Methods 2006, 3, 729-735.
(
8) (a) Moschel, R. C.; Hudgins, W. R.; Dipple, A. J. Org. Chem. 1980, 45,
(Figure 3). Both indicate that the nucleoside favors a syn glycosidic
5
33-535. (b) Peterson, L. A. Chem. Res. Toxicol. 1997, 10, 19-26. (c)
torsion angle, contrasting the anti-conformation proposed to maxi-
mize H-bonding and π-stacking interactions (Figure 1). The energy
barrier between syn and anti nucleoside conformations (Figure 1)
is typically low,13 and there may be structural differences among
the same free nucleoside in solution or solid state, duplex DNA, or
in the presence of other nucleosides.14,15 The relationship of the dNap
network in the crystal structure indicates a potential for π-π inter-
actions with an extensive array of face-to-face slipped π-π stacking
and hydrogen-bonding interactions of the naphthalene and deox-
yribose moieties, respectively, with adjacent dNaps arranged in
alternating orientations with about 3.2 Å between neighboring
parallel naphthyl groups. Further studies to determine the nucleoside
structure in the context of duplex DNA in the presence and absence
of adduct are required to understand the origin of the experimentally
observed stabilizing effect.
Mitra, G.; Pauly, G. T.; Kumar, R.; Pei, G. K.; Hughes, S. H.; Moschel,
R. C.; Barbacid, M. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 8650-8654.
(
d) Pauly, G. T.; Moschel, R. C. Chem. Res. Toxicol. 2001, 14, 894-
9
00. (e) Dolan, M. E.; Pegg, A. E. Clin. Cancer Res. 1997, 3, 837-847.
(9) (a) Mishina, Y.; Duguid, E. M.; He, C. Chem. ReV. 2006, 106, 215-236.
b) Margison, G. P.; Santibanez, K.; Mauro, F.; Povey, A. C. Mutagenesis
002, 17, 483-487.
(
2
(10) Using the program Insight II and information from adduct structures within
a ternary complex with a DNA polymerase, such as: Ling, H.; Sayer, J.
M.; Plosky, B. S.; Yagi, H.; Buodsocq, R.; Woodgate, R.; Jerina, D. M.;
Yang, W. Proc. Natl. Acad. Sci. U.S.A. 2004, 8, 2265-2269.
(
11) Calculated for all point mutations at X,Y in Figure 2 sequence using the
DINAMelt server, http://www.bioinfo.rpi.edu.
(
12) Marky, L. A.; Breslauer, K. J. Biopolymers 1987, 26, 1601-1620.
(13) Rosemeyer, H.; T o´ th, G.; Golankiewicz, B.; Kazimierczuk, Z.; Bourgeois,
W.; Kretschmer, U.; Muth, H.; Seela, F. J. Org. Chem. 1990, 55, 5784-
5790.
(14) (a) Guckian, K. M.; Morales, J. C.; Kool, E. T. J. Org. Chem. 1998, 63,
9
652-9656. (b) Guckian, K. M.; Krugh, T. R.; Kool, E. T. J. Am. Chem.
Soc. 2000, 122, 6841-6847.
(15) Haschemeyer, A. E. V.; Sobell, H. M. Acta Crystallogr. 1965, 19,
125-130.
The novel naphthalene-derived nucleoside forms an orthogonal
and thermodynamically stable base pair with the biologically
JA070688G
J. AM. CHEM. SOC.
9
VOL. 129, NO. 16, 2007 4883