Edge Article
Chemical Science
for its continued and generous support of our research
programs. Dr J. Li (Univ. Vienna) is acknowledged for the
discovery of the dehydrogenation reaction. Dr W. Zawodny and
Dr M. Vayer (both Univ. Vienna) are gratefully acknowledged for
proofreading and editing.
M. Gillard, J. B. Falmagne and L. Ghosez, J. Am. Chem.
Soc., 1979, 101, 4381–4383; (c) M.-M. Wang, G.-H. Sui,
X.-C. Cui, H. Wang, J.-P. Qu and Y.-B. Kang, J. Org. Chem.,
2019, 84, 8267–8274.
9 The reaction proceeds well with 2-halo pyridines (except for
2-uoro pyridine) and 2-OMe pyridine, allowing quantitative
dehydrogenation within 60 minutes. For optimization
details, see the ESI.†
References
1
D. W. Knight, in Reference Module in Chemistry, Molecular 10 N. Prilezhaev, Ber. Dtsch. Chem. Ges., 1909, 42, 4811–4815.
Sciences and Chemical Engineering: Organic Methodology and 11 The ortho-Cl analogue was observed in reasonable NMR
Organic Synthesis, Elsevier Inc., 2013.
S. Caron, in Practical synthetic organic chemistry, Wiley & Sons
Inc., 2011.
For recent reviews on C–H functionalization see: (a)
P. Gandeepan, T. M u¨ ller, D. Zell, G. Cera, S. Warratz and
L. Ackermann, Chem. Rev., 2019, 119, 2192–2452; (b) C. Ma,
yields, but the product could not be isolated in satisfactory
yields due to difficult purication.
12 (a) D. D. Perrin, in Dissociation constants of organic bases in
aqueous solution, Butterworths, London, 1965; (b) Aer
addition of water to the reaction mixture, the pH of the
aqueous layer was qualitatively measured to be #1.
2
3
P. Fang and T.-S. Mei, ACS Catal., 2018, 8, 7179–7189; (c) 13 (a) G. Stork, L. D. Cama and D. R. Coulson, J. Am. Chem. Soc.,
H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh
and A. Lei, Chem. Rev., 2017, 117, 9016–9085; (d)
D. J. Abrams, P. A. Provencher and E. J. Sorensen, Chem.
Soc. Rev., 2018, 47, 8925–8967.
1974, 96, 5268–5270; (b) G. Stork and J. F. Cohen, J. Am.
Chem. Soc., 1974, 96, 5270–5272; (c) S. G. Levine and
M. P. Bonner, Tetrahedron Lett., 1989, 30, 4767–4770; (d)
K. Takahashi, K. Komine, Y. Yokoi, J. Ishihara and
S. Hatakeyama, J. Org. Chem., 2012, 77, 7364–7370.
4
(a) P.-X. Shen, L. Hu, Q. Shao, K. Hong and J.-Q. Yu, J. Am.
Chem. Soc., 2018, 140, 6545–6549; (b) M. Wasa, K. M. Engle 14 Anchimeric stabilization, as previously reported for similar
and J.-Q. Yu, J. Am. Chem. Soc., 2009, 131, 9886–9887; (c)
Z. Huang and G. Dong, Tetrahedron Lett., 2014, 55, 5869–
species, probably results in an equilibrium with the
corresponding 3-membered iminium ether. For related
references, see: (a) D. J. Pasto and M. P. Serve, J. Am. Chem.
Soc., 1965, 87, 1515–1521; (b) J. P. B ´e gu ´e and
M. Charpentier-Morize, Acc. Chem. Res., 1980, 13, 207–212.
5889; (d) H. Park, N. Chekshin, P.-X. Shen and J.-Q. Yu,
ACS Catal., 2018, 8, 9292–9297; (e) M. Wasa and J.-Q. Yu,
Tetrahedron, 2010, 66, 4811–4815; (f) T. G. Saint-Denis,
R. Y. Zhu, G. Chen, Q.-F. Wu and J.-Q. Yu, Science, 2018, 15 (a) Z. Wang, Meinwald Rearrangement, in Comprehensive
3
59, eaao4798; (g) Q.-F. Wu, P.-X. Shen, J. He, X.-B. Wang,
Organic Name Reactions and Reagents, Wiley, Hoboken, NJ,
2010, pp. 1880–1882; (b) J. Meinwald, S. S. Labana and
M. S. Chadha, J. Am. Chem. Soc., 1963, 85, 582–585.
F. Zhang, Q. Shao, R.-Y. Zhu, C. Mapelli, J. X. Qiao,
M. A. Poss and J.-Q. Yu, Science, 2017, 355, 499–503.
5
6
(a) F. R. Petronijevi ´c , M. Nappi and D. W. C. MacMillan, J. 16 (a) A. Baeyer and V. Villiger, Ber. Dtsch. Chem. Ges., 1899, 32,
Am. Chem. Soc., 2013, 135, 18323–18326; (b) J. Ma,
A. R. Rosales, X. Huang, K. Harms, R. Riedel, O. Wiest and
E. Meggers, J. Am. Chem. Soc., 2017, 139, 17245–17248.
For reviews on the activation of amides with chapters
3625–3633; (b) G.-J. ten Brink, I. W. C. E. Arends and
R. A. Sheldon, Chem. Rev., 2004, 104, 4105–4124.
17 N. Kornblum and H. E. DeLaMare, J. Am. Chem. Soc., 1951,
73, 880–881.
including their functionalization see: (a) D. Kaiser, 18 (a) H. L. Riley, J. F. Morley and N. A. C. Friend, J. Chem. Soc.,
A. Bauer, M. Lemmerer and N. Maulide, Chem. Soc. Rev.,
1932, 1875–1883; (b) A. Guillemonat, Ann. Chim. Appl., 1939,
2018, 47, 7899–7925; (b) L. Ghosez, Angew. Chem., Int. Ed.
11, 143–211.
Engl., 1972, 11, 852–853; (c) A. Sidani, J. Marchand-Brynaert 19 For examples of domino allylic oxidation/lactonization see:
and L. Ghosez, Angew. Chem., Int. Ed. Engl., 1974, 13, 267–
68; (d) R. Bisceglia and C. J. Cheer, J. Chem. Soc., Chem.
Commun., 1973, 165–166; (e) O. Wallach, Liebigs Ann.
(a) N. Danieli, Y. Mazur and F. Sondheimer, Tetrahedron
Lett., 1961, 2, 310–312; (b) R. M. Patel, V. G. Puranik and
N. P. Argade, Org. Biomol. Chem., 2011, 9, 6312–6322.
2
Chem., 1877, 184, 1–127; (f) J. v. Braun and A. Heymons, 20 (a) H. Rapoport and U. T. Bhalerao, J. Am. Chem. Soc., 1971,
Chem. Ber., 1929, 62, 409–413; (g) L. Ghosez, B. Haveaux
and H. G. Viehe, Angew. Chem., Int. Ed. Engl., 1969, 8, 454–
93, 4835–4840; (b) C. S. Ra and G. Park, Tetrahedron Lett.,
2003, 44, 1099–1102; (c) D. A. Singleton and C. Hang, J.
Org. Chem., 2000, 65, 7554–7560.
455.
7
8
(a) P. Adler, C. J. Teskey, D. Kaiser, M. Holy, H. H. Sitte and 21 A. Lu, J. Wang, T. Liu, J. Han, Y. Li, M. Sin, J. Chen, H. Zhang,
N. Maulide, Nat. Chem., 2019, 11, 329–334; (b) D. Kaiser,
L. Wang and Q. Wang, J. Agric. Food Chem., 2014, 62, 8799–
C. J. Teskey, P. Adler and N. Maulide, J. Am. Chem. Soc.,
8807.
2017, 139, 16040–16043; (c) D. Kaiser, A. de la Torre, 22 (a) A. U. Rajshekhar, N. K. Rana and V. K. Singh, Tetrahedron
S. Shaaban and N. Maulide, Angew. Chem., Int. Ed., 2017,
Lett., 2013, 54, 1911–1915; (b) L. Hintermann and
A. Turo ˇc kin, J. Org. Chem., 2012, 77, 11345–11348.
56, 5921–5925.
(a) C. J. Teskey, P. Adler, C. R. Gonçalves and N. Maulide,
Angew. Chem., Int. Ed., 2019, 58, 447–451; (b) R. Da Costa,
This journal is © The Royal Society of Chemistry 2019
Chem. Sci.