Chemical Research in Toxicology
Article
(4) Romero-Gom
́
ez, M., Santos, M. N., Fernan
́
dez, M., Fovelo, M.,
(24) Nirogi, R., Kandikere, V., Palacharla, R. C., Bhyrapuneni, G.,
Kanamarlapudi, V. B., Ponnamaneni, R. K., and Manoharan, A. K.
(2014) Identification of a suitable and selective inhibitor towards
aldehyde oxidase catalyzed reactions. Xenobiotica 44, 197−204.
(25) Chen, W., Koenigs, L. L., Thompson, S. J., Peter, R. M., Rettie,
A. E., Trager, W. F., and Nelson, S. D. (1998) Oxidation of
acetaminophen to its toxic quinone imine and nontoxic catechol
metabolites by baculovirus-expressed and purified human cytochromes
P450 2E1 and 2A6. Chem. Res. Toxicol. 11, 295−301.
(26) Laine, J., Auriola, S., Pasanen, M., and Juvonen, R. (2009)
Acetaminophen bioactivation by human cytochrome P450 enzymes
and animal microsomes. Xenobiotica 39, 11−21.
(27) Boelsterli, U. (2003) Diclofenac-induced liver injury: a paradigm
of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol. 192, 307−322.
(28) Shen, S., Marchick, M. R., Davis, M. R., Doss, G. A., and Pohl, L.
R. (1999) Metabolic activation of diclofenac by human cytochrome
P450 3A4: role of 5-hydroxydiclofenac. Chem. Res. Toxicol. 12, 214−
222.
Suarez-Garciaa, E., and Fernaandez, M. C. (1999) Acute cholestatic
́
hepatitis induced by nimesulide. Liver Int. 19, 164−165.
(5) Stadlmann, S., Zoller, H., Vogel, W., and Offner, F. A. (2002)
COX-2 inhibitor (nimesulide) induced acute liver failure. Virchows
Arch. 440, 553−555.
(6) Bessone, F., Colombato, L., Fassio, E., Reggiardo, M. V.,
Vorobioff, J., and Tanno, H. (2010) The Spectrum of Nimesulide-
Induced-Hepatotoxicity. An Overview. Anti-Inflammatory Anti-Allergy
Agents Med. Chem. 9, 355−365.
(7) Boelsterli, U. A. (2002) Mechanisms of NSAID-induced
hepatotoxicity. Drug Saf. 25, 633−648.
(8) Amacher, D. E. (2012) The primary role of hepatic metabolism
in idiosyncratic drug-induced liver injury. Expert Opin. Drug Metab.
Toxicol. 8, 335−347.
(9) Baillie, T. A. (2006) Future of toxicology metabolic activation
and drug design: challenges and opportunities in chemical toxicology.
Chem. Res. Toxicol. 19, 889−893.
(10) Park, B. K., Kitteringham, N. R., Maggs, J. L., Pirmohamed, M.,
and Williams, D. P. (2005) The role of metabolic activation in drug-
induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol. 45, 177−202.
(11) Dahlin, D. C., Miwa, G. T., Lu, A., and Nelson, S. D. (1984) N-
acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation
product of acetaminophen. Proc. Natl. Acad. Sci. U. S. A. 81, 1327−
1331.
(12) Li, F., Chordia, M. D., Huang, T., and Macdonald, T. L. (2009)
In vitro nimesulide studies toward understanding idiosyncratic
hepatotoxicity: diiminoquinone formation and conjugation. Chem.
Res. Toxicol. 22, 72−80.
(13) Yang, M., Chordia, M. D., Li, F., Huang, T., Linden, J., and
Macdonald, T. L. (2010) Neutrophil-and myeloperoxidase-mediated
metabolism of reduced nimesulide: evidence for bioactivation. Chem.
Res. Toxicol. 23, 1691−1700.
(14) Mingatto, F. E., Rodrigues, T., Pigoso, A. A., Uyemura, S. A.,
Curti, C., and Santos, A. C. (2002) The critical role of mitochondrial
energetic impairment in the toxicity of nimesulide to hepatocytes. J.
Pharmacol. Exp. Ther. 303, 601−607.
(29) Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and
Monks, T. J. (2000) Role of quinones in toxicology. Chem. Res.
Toxicol. 13, 135−160.
(30) Park, B. K., Kitteringham, N. R., and O’Neill, P. M. (2001)
Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol.
Toxicol. 41, 443−470.
(31) Xie, C., Zhou, J., Guo, Z., Diao, X., Gao, Z., Zhong, D., Jiang, H.,
Zhang, L., and Chen, X. (2013) Metabolism and bioactivation of
famitinib, a novel inhibitor of receptor tyrosine kinase, in cancer
patients. Br. J. Pharmacol. 168, 1687−1706.
(32) Cortial, S., Chaignon, P., Sergent, D., Dezard, S., and Ouazzani,
J. (2012) Dehydrogenation, oxidative denitration and ring contraction
of N, N-dimethyl-5-nitrouracil by a Bacillus nitroreductase Nfr-A1. J.
Mol. Catal. B: Enzym. 76, 1−8.
(33) Wang, K., and Guengerich, F. P. (2013) Reduction of aromatic
and heterocyclic aromatic N-hydroxylamines by human cytochrome
P450 2S1. Chem. Res. Toxicol. 26, 993−1004.
(34) Naisbitt, D. J., O’Neill, P. M., Pirmohamed, M., and Park, B. K.
(1996) Synthesis and reactions of nitroso sulphamethoxazole with
biological nucleophiles: implications for immune mediated toxicity.
Bioorg. Med. Chem. Lett. 6, 1511−1516.
(35) Ueda, O., Sugihara, K., Ohta, S., and Kitamura, S. (2005)
Involvement of molybdenum hydroxylases in reductive metabolism of
nitro polycyclic aromatic hydrocarbons in mammalian skin. Drug
Metab. Dispos. 33, 1312−1318.
(36) Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G.,
and Gutteridge, J. M. (1987) Allopurinol and oxypurinol are hydroxyl
radical scavengers. FEBS Lett. 213, 23−28.
(15) Fau, D., Berson, A., Eugene, D., Fromenty, B., Fisch, C., and
Pessayre, D. (1992) Mechanism for the hepatotoxicity of the
antiandrogen, nilutamide. Evidence suggesting that redox cycling of
this nitroaromatic drug leads to oxidative stress in isolated hepatocytes.
J. Pharmacol. Exp. Ther. 263, 69−77.
(16) Klee, S., Nurnberger, M. C., and Ungemach, F. R. (1994) The
̈
consequences of nitrofurantoin-induced oxidative stress in isolated rat
hepatocytes: evaluation of pathobiochemical alterations. Chem.-Biol.
Interact. 93, 91−102.
(17) Kovacic, P., and Somanathan, R. (2014) Nitroaromatic
compounds: Environmental toxicity, carcinogenicity, mutagenicity,
therapy and mechanism. J. Appl. Toxicol. 34, 810−824.
(18) Macpherson, D. (2012) The Biotransformation and Pharmaco-
kinetics of 14C-Nimesulide in Humans Following a Single Dose Oral
Administration. J. Drug Metab. Toxicol. 4, 140.
(19) Berry, M., and Friend, D. (1969) High-yield preparation of
isolated rat liver parenchymal cells A biochemical and fine structural
study. J. Cell Biol. 43, 506−520.
(20) Orrenius, S., Thor, H., Rajs, J., and Berggren, M. (1976) Isolated
rat hepatocytes as an experimental tool in the study of cell injury.
Effect of anoxia. Forensic Sci. 8, 255−263.
(21) Xie, C., Zhong, D., and Chen, X. (2013) A fragmentation-based
method for the differentiation of glutathione conjugates by high-
resolution mass spectrometry with electrospray ionization. Anal. Chim.
Acta 788, 89−98.
(22) Boelsterli, U. A., Ho, H. K., Zhou, S., and Yeow Leow, K. (2006)
Bioactivation and hepatotoxicity of nitroaromatic drugs. Curr. Drug
Metab. 7, 715−727.
(23) Diamond, S., Boer, J., Maduskuie, T. P., Jr., Falahatpisheh, N.,
Li, Y., and Yeleswaram, S. (2010) Species-specific metabolism of
SGX523 by aldehyde oxidase and the toxicological implications. Drug
Metab. Dispos. 38, 1277−1285.
(37) Das, D. K., Engelman, R. M., Clement, R., Otani, H., Prasad, M.
R., and Rao, P. S. (1987) Role of xanthine oxidase inhibitor as free
radical scavenger: a novel mechanism of action of allopurinol and
oxypurinol in myocardial salvage. Biochem. Biophys. Res. Commun. 148,
314−319.
(38) Awasthi, S., Srivastava, S. K., Ahmad, F., Ahmad, H., and Ansari,
G. (1993) Interactions of glutathione S-transferase-π with ethacrynic
acid and its glutathione conjugate. Biochim. Biophys. Acta, Protein
Struct. Mol. Enzymol. 1164, 173−178.
(39) Chang, M., Zhang, F., Shen, L., Pauss, N., Alam, I., van
Breemen, R. B., Blond, S. Y., and Bolton, J. L. (1998) Inhibition of
glutathione S-transferase activity by the quinoid metabolites of equine
estrogens. Chem. Res. Toxicol. 11, 758−765.
(40) Casalino, E., Sblano, C., Landriscina, V., Calzaretti, G., and
Landriscina, C. (2004) Rat liver glutathione S-transferase activity
stimulation following acute cadmium or manganese intoxication.
Toxicology 200, 29−38.
(41) Keyes, S. R., Fracasso, P. M., Heimbrook, D. C., Rockwell, S.,
Sligar, S. G., and Sartorelli, A. C. (1984) Role of NADPH: cytochrome
c reductase and DT-diaphorase in the biotransformation of mitomycin
C. Cancer Res. 44, 5638−5643.
(42) Berson, A., Wolf, C., Berger, V., Fau, D., Chachaty, C.,
Fromenty, B., and Pessayre, D. (1991) Generation of free radicals
J
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX