10.1002/ejoc.201900518
European Journal of Organic Chemistry
COMMUNICATION
Table 3. Inversion of the diastereoselectivity of 3.
Experimental Section
(Scheme 2) To a mixture of MgCl2 (0.050 mmol) and Bu2SnBr2 (0.050 mol)
in 1,2-dichloroethane (1 mL) was added MCP 1 (0.75 mmol) and
cyanoalkene 2 (0.50 mmol). The reaction mixture was heated at 80 °C for
2 h and quenched with brine (10 mL). The resulting mixture was extracted
with Et2O (3 x 10 mL) and the collected organic layer was dried over
MgSO4. After filtration, the organic solvent was evaporated in vacuo to give
crude product 3, which was analyzed by 1H NMR. The crude product was
purified by a silica gel column chromatography to give pure product 3.
Acknowledgements ((optional))
We thank the Instrumental Analysis Center, Faculty of
Engineering, Osaka University, for assistance with collecting the
spectral data.
Finally, the transformation of the spiro[2.3]hexane 3f
was carried out under heating conditions (Scheme 5).8 We
expected to have its methoxy carbonyl moiety removed by
means of Krapcho decarboxylation even though diethyl ester
groups were contained in the product.9 Actually, not only the
removal but also a rearrangement reaction10 took place to give
the cyclopentene ring 8, which probably followed the pathway
shown in Scheme 6. After the decarboxylation occurred, the
ring opening led to methylene cyclopentane 8’ followed by
isomerization of the double bond to form the product 8.11 This
is the first example of preparing the same cyclopentanoids
without the use of a precious transition-metal catalyst.12
Keywords: Methylenecyclopropane • Cyanoalkene • Tin • Ate
Complex • Spirohexane
[1]
[2]
a) H. Liu, Y. Tian, K. Lee, P. Krishnan, M. K.-M. Wang, S. Whelan, E.
Mevers, V. Soloveva, B. Dedic, X. Liu, J. M. Cunningham, J. Med. Chem.
2018, 61, 6293; b) M. Packiarajan, M. Grenon, S. Zorn, A. T. Hopper, A.
D. White, G. Chandrasena, X. Pu, R. M. Brodbeck, A. J. Robichaud,
Bioorg. Med. Chem. Lett. 2013, 23, 4037; c) L. Bondada, G. Gumina, R.
Nair, X. H. Ning, R. F. Schinazi, C. K. Chu, Org. Lett. 2004, 6, 2531.
a) X.-Y. Zhang, S. Yang, Y. Wei, M. Shi, Org. Biomol. Chem. 2018, 16,
6399; b) K. Chen, R. Sun, Q. Xu, Y. Weib, M. Shi, Org. Biomol. Chem.
2013, 11, 3949; c) I. Nakamura, R. Nagata, T. Nemoto, M. Terada, Y.
Yamamoto, T. Späth, A. Meijere, Eur. J. Org. Chem. 2007, 4479; d) S.
Yamago, A, Takeichi, E. Nakamura, Synthesis 1996, 1380; e) S. Yamago,
A, Takeichi, E. Nakamura, J. Am. Chem. Soc. 1994, 116, 1123; f) W. R.
Dolbier, M. Seabury, D. Daly, B. E. Smart, J. Org. Chem., 1986, 51, 974;
g) B. C. Anderson, J. Org. Chem. 1962, 27, 2720
Conclusion
A diastereoselective coupling of MCP 1 and cyanoalkene 2
succeeded in the formation of spiro[2.3]hexane 3. The
selectivity depended on the size of the halogen derived from
the Bu2SnX2+MgX2 catalyst, which can be explained by
considering the steric hindrance in the reaction with
intermediate 6. The spiro[2.3]hexane 3 was converted into
cyclopentene 8 via decarbonylation and rearrangement.
Further elucidation of the reaction mechanism and a
transformation of spirocarbocycles 3 while maintaining their
skeleton is underway.
[3]
[4]
a) M. Gulías, A. Collado, B. Trillo, F. López, E. Oñate, M. A. Esteruelas,
J. L. Mascareñas, J. Am. Chem. Soc. 2011, 133, 7660; b) P. Binger, A.
Brinkmann, P. Wedemann, Chem. Ber. 1983, 116, 2920.
Other type of formation of spiro[2.3]hexane, see; a) B. Cao, Y. Wei, C.
Ye, L.-Z, Wu, M. Shi, Org. Chem. Front. 2018, 5, 1890; b) P. An, Q. Lin,
Org. Biomol. Chem. 2018, 16, 5241; c) B. Cao, Y. Wei, M. Shi, Chem.
Commun. 2018, 54, 2870; d) N. V. Yashin, E. B. Averin, D. A. Vasilenko,
Y. K. Grishin, D. I. Osolodkin, V. A. Palyulin, T. S. Kuznetsov, N. S.
Zefirov, Russ. Chem. Bull. Int. Ed. 2017, 66, 1483; e) I. R. Ramazanov,
R. N. Kadiova, T. P. Zosim, U. M. Dzhemilev, A. Mijere, Eur. J. Org.
Chem. 2017, 7060; f) A, Kolleth, A. Lumbroso, G. Tanriver, S. Catak, S.
Sulzer-Mossé, A. D Mesmaeker, Tetrahedron Lett. 2016, 57, 2697; g) N.
V. Yashin, E. B. Averin, A. V. Chemagin, M. E. Zapolskii, Y. K. Grishin,
T. S. Kuznetsov, N. S. Zefirov, Russ. Chem. Bull. Int. Ed. 2015, 64, 2178;
h) Z. Yu, Q. Lin, J. Am. Chem. Soc. 2014, 136, 4153; i) N. V. Yashin, A.
V. Chemagin, Y. K. Grishin, T. S. Kuznetsova, N. S. Zefirov, Dokl. Chem.
2013, 450, 547; j) V. A. D’yakonov, R. A. Tuktarova, O. A. Trapeznikova,
L. M. Khalilov, N. R. Popod’ko, ARKIVOC 2011, 20. k) A. V. Chemagin,
N. V. Yashin, Y. K. Grishin, T. S. Kuznetsova, N. S. Zefirov, Synthesis
2010, 259; l) H. Sami, O. Piva, Tetrahedron Lett. 2008, 49, 2994; m) T.
Matsuda, M. Shigeno, M. Murakami, Chem. Lett. 2006, 35, 288; n) V. V.
Razin, N. V. Ulin, Russ. J. Org. Chem. 2005, 41, 189; o) K. B. Wiberg, S.
T. Waddell, Tetrahedron Lett. 1987, 28, 151; p) B. Emil, M. Wolfgang,
Chimia, 1968, 22, 193.
[5]
a) I. Suzuki, S. Tsunoi, I. Shibata, Org. Lett. 2017, 19, 2690; b) S. Tsunoi,
Y. Maruoka, I. Suzuki, I. Shibata, Org. Lett. 2015, 17, 4010; c) H.
Takahashi, S. Yasui, S. Tsunoi, I. Shibata, Org. Lett. 2014, 16, 1192; d)
Scheme 5. Further conversion of the spirohexane 3f by Krapcho
decarboxylation.
This article is protected by copyright. All rights reserved.