8-acetoxypyrene-1,3,6-trisulfonic acid trisodium salt (1) or
0.3 mM for the use with isobutyryl fluorescein (3)) adjusted to the
desired pH value using HCl 1 M. The reaction rate with 4-MeIm
was obtained under the same conditions as described above. The
final concentrations in the 96-well half area flat bottom plate were
0, 88, 132, 198, 296, 444, 667 and 1000 mM of 4-MeIm (for 1)
or 0, 8.78, 13.2, 19.8, 29.6, 44.4, 66.7 and 100 mM of 4-MeIm
(for 3); 200 mM (for 1) or 20 mM (for 3) of substrate and 5 mM
(citrate buffer pH 5.5) of buffer. The second order rate constants
k2 were calculated from linear regression of the experimentally
measured pseudo first order rate constants k2¢ as a function of 4-
MeIm concentrations. The second order rate constants k2 is given
by k2 = k2¢/[S]. The following values were obtained: k2 (for 1, pH
5.5) = 1.00 min-1 M-1, k2 (for 3, pH 5.5) = 2.26 min-1 M-1.
2 (a) L. Crespo, G. Sanclimens, M. Pons, E. Giralt, M. Royo and F.
Albericio, Chem. Rev., 2005, 105, 1663–1681; (b) P. Niederhafner,
J. Sebestik and J. Jezek, J. Pept. Sci., 2005, 11, 757–788; (c) J.
Kofoed and J.-L. Reymond, Curr. Opin. Chem. Biol., 2005, 9, 656–
664.
3 (a) A. Esposito, E. Delort, D. Lagnoux, F. Djojo and J.-L. Reymond,
Angew. Chem., Int. Ed., 2003, 42, 1381–1383; (b) C. Douat-Casassus, T.
Darbre and J.-L. Reymond, J. Am. Chem. Soc., 2004, 126, 7817–7826;
(c) T. Darbre and J.-L. Reymond, Acc. Chem. Res., 2006, 39, 925–934.
4 (a) A. Clouet, T. Darbre and J.-L. Reymond, Angew. Chem., Int. Ed.,
2004, 43, 4612–4615; (b) N. Maillard, A. Clouet, T. Darbre and J.-L.
Reymond, Nat. Protoc., 2009, 4, 132–142.
5 (a) E. Kolomiets, E. M. V. Johansson, O. Renaudet, T. Darbre and
J.-L. Reymond, Org. Lett., 2007, 9, 1465–1468; (b) E. Kolomiets, M.
A. Swiderska, R. U. Kadam, E. M. V. Johansson, K.-E. Jaeger, T.
Darbre and J.-L. Reymond, ChemMedChem, 2009, 4, 562–569; (c) N.
A. Uhlich, P. Sommer, C. Bu¨hr, S. Schu¨rch, J.-L. Reymond and T.
Darbre, Chem. Commun., 2009, 6237–6239.
6 N. Maillard, T. Darbre and J.-L. Reymond, J. Comb. Chem., 2009, 11,
667–675.
Aldol reactions
7 (a) P. Sommer, V. S. Fluxa`, T. Darbre and J.-L. Reymond, Chem-
BioChem, 2009, 10, 1527–1536; (b) E. M. V. Johansson, R. U. Kadam,
G. Rispoli, S. A. Crusz, K. M. Bartels, S. P. Diggle, M. Ca´mara, P.
Williams, K. E. Jaeger, T. Darbre and J.-L. Reymond, Med. Chem.
Commun., 2011, 2, 418–420.
8 (a) R. Breslow, Acc. Chem. Res., 1995, 28, 146–153; (b) A. J. Kirby, F.
Hollfelder, From Enzyme Models to Model Enzymes, Royal Society of
Chemistry: Cambridge, 2009; (c) L. Baltzer and J. Nilsson, Curr. Opin.
Biotechnol., 2001, 12, 355–360.
9 (a) E. Delort, T. Darbre and J.-L. Reymond, J. Am. Chem.
Soc., 2004, 126, 15642–15643; (b) E. Delort, N.-Q. Nguyen-Trung,
T. Darbre and J.-L. Reymond, J. Org. Chem., 2006, 71, 4468–
4480.
10 (a) S. Javor, E. Delort, T. Darbre and J.-L. Reymond, J. Am. Chem.
Soc., 2007, 129, 13238–13246; (b) S. Javor and J.-L. Reymond, J. Org.
Chem., 2009, 74, 3665–3674; (c) S. Javor and J.-L. Reymond, Isr. J.
Chem., 2009, 49, 129–136.
11 J. Kofoed, T. Darbre and J.-L. Reymond, Org. Biomol. Chem., 2006, 4,
3268–3281.
12 (a) S. M. Grayson and J. M. J. Fre´chet, Chem. Rev., 2001, 101, 3819–
3867; (b) G. R. Newkome and C. Shreiner, Chem. Rev., 2010, 110,
6338–6442.
13 (a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004–2021; (b) K. L. Killops, L. M. Campos and C. J.
Hawker, J. Am. Chem. Soc., 2008, 130, 5062–5064; (c) G. Franc and A.
Kakkar, Chem. Commun., 2008, 5267–5276.
14 (a) P. E. Dawson, T. W. Muir, I. Clark-Lewis and S. B. H. Kent, Science,
1994, 266, 776–779; (b) I. van Baal, H. Malda, S. A. Synowsky, J. L.
J. van Dongen, T. M. Hackeng, M. Merkx and E. W. Meijer, Angew.
Chem., Int. Ed., 2005, 44, 5052–5057; (c) V. Y. Torbeev and S. B. H.
Kent, Angew. Chem., Int. Ed., 2007, 46, 1667–1670; (d) A. Dirksen, E.
W. Meijer, W. Adrieaens and T. M. Hackeng, Chem. Commun., 2006,
1667–1669.
A freshly prepared solution of 4-nitrobenzaldehyde in acetone
(200 mM, 50 mL) was mixed with a solution of dendrimer catalyst
in buffer (50 mL) in a 1 mL glass vial and stirred for 14 to
24 h at rt by means of a miniature stirring ball. The initial
reaction concentrations of dendrimers were determined using
amino acid analysis: 0.04 mM (= 1/25 mol%) for the 4th generation
compound, 0.02 mM (= 1/50 mol%) for 5th generation com-
pounds or 0.01 mM (1/100 mol%) for 6th generation compounds
corresponding to 0.64 mol% N-terminal Pro. Aq. bicine buffer
0.1 M at pH 8.5, aq. HEPES buffer 0.1 M at pH 7.0 or aq.
citric acid–sodium citrate buffer 0.1 M at pH 6.0 or 5.0 were
used as buffers and the pH was adjusted to the desired value
with HCl 1.0 M or NaOH 1.0 M using a Metrohm 692 pH/ion
meter. A variant of the reaction consisted in replacing the solvent
system by DMSO/acetone (4/1 v/v), buffered with x equiv. of
N-methylmorpholine (NMM, where x = number of formic acid–
amine salts for the dendrimer tested). An aliquot (1 mL) of the
reaction mixture was taken every 30 min or 1 h, quenched with
A (mQ-deionized H2O with 0.1% TFA, 200 mL) and injected to
analytical RP-UPLC. A gradient of A/D 100/0 to 0/100 in 5 min
was used and the reaction followed at l = 254 nm. Conversion was
calculated using the area under the peaks. The initial reaction rate
was deduced from the initial slope (first 5 h) of the curves “aldol
product 6 [mM] vs. time [h]”. L-Pro (0.64 mM) was used as refer-
ence catalyst and the background (4-nitrobenzaldehyde (100 mM)
in buffer or DMSO/acetone (4/1 v/v)) was recorded for every
experiment in parallel. The enantiomeric excess was determined
15 (a) W. Lindner and F. A. Robey, Int. J. Pept. Protein Res., 1987, 30,
794–800; (b) F. A. Robey and R. L. Fields, Anal. Biochem., 1989, 177,
373–377; (c) P. E. Dawson and S. B. H. Kent, J. Am. Chem. Soc.,
1993, 115, 7263–7266; (d) D. R. Englebretsen, B. G. Garnham, D.
A. Bergman and P. F. Alewood, Tetrahedron Lett., 1995, 36, 8871–
8874; (e) S. Futaki, M. Aoki, M. Fukuda, F. Kondo, M. Niwa, K.
Kitagawa and Y. Nakaya, Tetrahedron Lett., 1997, 38, 7071–7074; (f) D.
R. Englebretsen, B. Garnham and P. F. Alewood, J. Org. Chem., 2002,
67, 5883–5890; (g) F. M. Brunel and P. E. Dawson, Chem. Commun.,
2005, 2552–2554; (h) Y. Sako, J. Morimoto, H. Murakami and H. Suga,
J. Am. Chem. Soc., 2008, 130, 7232–7234; (i) Y. Sako, Y. Goto, H.
Murakami and H. Suga, ACS Chem. Biol., 2008, 3, 241–249; (j) J. O.
Freeman, W. C. Lee, M. E. P. Murphy and J. C. Sherman, J. Am. Chem.
Soc., 2009, 131, 7421–7429.
R
by means of a chiral Daicel Chirlapak ASꢀ column with a gradient
of iPrOH/hexane 20/80 isocratic in 20 min (l = 254 nm).
Acknowledgements
This work was supported financially by the Swiss National Science
Foundation, the Marie-Curie Training Network IBAAC, and the
University of Berne.
16 M. Sakamoto, A. Ueno and H. Mihara, Chem. Commun., 2000, 1741–
1742.
References
17 (a) P. Sommer, N. A. Uhlich, J.-L. Reymond and T. Darbre, Chem-
BioChem, 2008, 9, 689–693; (b) N. A. Uhlich, A. Natalello, R. U.
Kadam, S. M. Doglia, J.-L. Reymond and T. Darbre, ChemBioChem,
2010, 11, 358–365 .
18 M. Wiesner, G. Upert, G. Angelici and H. Wennemers, J. Am. Chem.
Soc., 2010, 132, 6–7.
1 (a) G. R. Newkome, C. N. Moorefield, F. Vo¨gtle, Dendritic Molecules:
Concepts, Synthesis, Applications, VCH: Weinheim, 2001; (b) C. C. Lee,
J. A. MacKay, J. M. J. Fre´chet and F. C. Szoka, Nat. Biotechnol., 2005,
23, 1517–1526; (c) D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev.,
2010, 110, 1857–1959.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 7071–7084 | 7083
©