Journal of the American Chemical Society
Article
(
7) Abersfelder, K.; Russell, A.; Rzepa, H. S.; White, A. J. P.;
Haycock, P. R.; Scheschkewitz, D. J. Am. Chem. Soc. 2012, 134, 16008.
8) Matsumoto, H.; Higuchi, K.; Hoshino, Y.; Koike, H.; Naoi, Y.;
Nagai, Y. J. Chem. Soc., Chem. Commun. 1988, 1083.
9) Sekiguchi, A.; Yatabe, T.; Kamatani, H.; Kabuto, C.; Sakurai, H. J.
Am. Chem. Soc. 1992, 114, 6260.
10) Matsumoto, H.; Higuchi, K.; Kyushin, S.; Goto, M. Angew.
Chem., Int. Ed. Engl. 1992, 31, 1354.
11) Nied, D.; Koppe, R.; Klopper, W.; Schno
Am. Chem. Soc. 2010, 132, 10264.
12) Iwamoto, T.; Tsushima, D.; Kwon, E.; Ishida, S.; Isobe, H.
Angew. Chem., Int. Ed. 2012, 51, 2340.
13) Fischer, G.; Huch, V.; Mayer, P.; Vasisht, S. K.; Veith, M.;
Wiberg, N. Angew. Chem., Int. Ed. 2005, 44, 7884.
(45) Kordts, N.; Borner, C.; Panisch, R.; Saak, W.; Mu
Organometallics 2014, 33, 1492.
(46) Stella, F. Synthesis, Rearrangement and Further Reactions of
Organosilanes and Organostannes, Dissertation, Technical University
Graz, 2016.
(47) All calculations were done using the Gaussian 09 program,
version B1.
(49) Grimme, S.; Schreiner, P. R. Angew. Chem. 2011, 123, 12849.
̈
ller, T.
(
(
(
(
̈
̈
ckel, H.; Breher, F. J.
(50) Arp, H.; Baumgartner, J.; Marschner, C.; Zark, P.; Mu
Am. Chem. Soc. 2012, 134, 6409.
̈
ller, T. J.
(
(51) Guo, J.-D.; Liptrot, D. J.; Nagase, S.; Power, P. P. Chem. Sci.
2015, 6, 6235.
(52) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.
(
(
(
14) Scheschkewitz, D. Angew. Chem., Int. Ed. 2005, 44, 2954.
15) Abersfelder, K.; White, A. J. P.; Berger, R. J. F.; Rzepa, H. S.;
2010, 132, 154104.
(53) Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211.
diss
(
54) ΔE is calculated as the difference between the electronic
Scheschkewitz, D. Angew. Chem., Int. Ed. 2011, 50, 7936.
16) Abersfelder, K.; White, A. J. P.; Rzepa, H. S.; Scheschkewitz, D.
Science 2010, 327, 564.
17) Suzuki, K.; Matsuo, T.; Hashizume, D.; Fueno, H.; Tanaka, K.;
Tamao, K. Science 2011, 331, 1306.
18) Ishida, S.; Otsuka, K.; Toma, Y.; Kyushin, S. Angew. Chem., Int.
Ed. 2013, 52, 2507.
19) Tsurusaki, A.; Koganezono, M.; Otsuka, K.; Ishida, S.; Kyushin,
S. Chem. - Eur. J. 2014, 20, 9263.
20) Tsurusaki, A.; Iizuka, C.; Otsuka, K.; Kyushin, S. J. Am. Chem.
Soc. 2013, 135, 16340.
21) Tillmann, J.; Wender, J. H.; Bahr, U.; Bolte, M.; Lerner, H. W.;
Holthausen, M. C.; Wagner, M. Angew. Chem., Int. Ed. 2015, 54, 5429.
22) Marschner, C. In Science of Synthesis, Knowledge Updates 2013;
Oestreich, M., Ed.; Thieme Verlag: Stuttgart, 2013; Vol. 2, p 109.
energy of the optimized structure of the complex between the cation
and PhCl and the sum of the electronic energies of the constituents
(
(
cation and PhCl).
(
(
55) ΔGdiss(298) is calculated as the difference between the Gibbs
energy of the optimized structure of the complex between the cation
and PhCl at 298 K and the sum of the Gibbs energy of the
constituents (cation and PhCl).
(
(
(
2
(
56) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105,
999.
57) The Gibbs energy difference between cation 8 and cation 14 of
(
−1
6
kJ mol suggests that at 243 K ≈5% of cation 14 could be present in
(
29
equilibrium. The quality of the Si NMR spectra shown in Figure 1
does not allow, however, a clear assignment. A graphical comparison
between calculated 29Si NMR spectra for cations 8 and 14 with the
(
(
(
(
23) Ishikawa, M.; Kumada, M. J. Chem. Soc. D 1969, 567.
24) Ishikawa, M.; Kumada, M. J. Chem. Soc. D 1970, 157.
25) Ishikawa, M.; Iyoda, J.; Ikeda, H.; Kotake, K.; Hashimoto, T.;
(58) The Gibbs free energy differences between silanes 3 and 4
calculated at 298 K for the gas phase also do not differ significantly;
Kumada, M. J. Am. Chem. Soc. 1981, 103, 4845.
26) Ishikawa, M.; Watanabe, M.; Iyoda, J.; Ikeda, H.; Kumada, M.
Organometallics 1982, 1, 317.
298
that is, G values relative to silane 2 are calculated as follows:
(
298
−1
298
−1
ΔG (3) = −6 kJ mol and ΔG (4) = −24 kJ mol .
(
(
27) Blinka, T. A.; West, R. Organometallics 1986, 5, 128.
28) Albers, L.; Meshgi, M. A.; Baumgartner, J.; Marschner, C.;
Mu
30) Fischer, J.; Baumgartner, J.; Marschner, C. Science 2005, 310,
25.
31) Wagner, H.; Baumgartner, J.; Marschner, C.; Poelt, P.
Organometallics 2011, 30, 3939.
32) Wagner, J. P.; Schreiner, P. R. Angew. Chem., Int. Ed. 2015, 54,
2274.
33) Kayser, C.; Kickelbick, G.; Marschner, C. Angew. Chem., Int. Ed.
002, 41, 989.
34) Krempner, C. Polymers 2012, 4, 408.
35) Muller, T. In Structure and Bonding; Scheschkewitz, D., Ed.;
Springer: Berlin, 2014; Vol. 155, p 107.
̈
ller, T. Organometallics 2015, 34, 3756.
(
̈
ller, T. Chem. Eur.
(
8
(
(
1
(
2
(
(
̈
(
36) Mu
̈
ller, T. Angew. Chem., Int. Ed. 2001, 40, 3033.
ller, T. J. Am. Chem. Soc. 2006, 128,
(
37) Panisch, R.; Bolte, M.; Mu
̈
9
(
2
(
676.
38) Sekiguchi, A.; Murakami, Y.; Fukaya, N.; Kabe, Y. Chem. Lett.
004, 33, 530.
39) Khalimon, A. Y.; Lin, Z. H.; Simionescu, R.; Vyboishchikov, S.
F.; Nikonov, G. I. Angew. Chem., Int. Ed. 2007, 46, 4530.
40) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. Chem.
Commun. 2006, 767.
(
(
41) Nava, M.; Reed, C. A. Organometallics 2011, 30, 4798.
(
42) Connelly, S. J.; Kaminsky, W.; Heinekey, D. M. Organometallics
2
(
013, 32, 7478.
43) Bolli, C.; Derendorf, J.; Jenne, C.; Scherer, H.; Sindlinger, C. P.;
Wegener, B. Chem. - Eur. J. 2014, 20, 13783.
44) Schafer, A.; Reißmann, M.; Schafer, A.; Schmidtmann, M.;
Muller, T. Chem. - Eur. J. 2014, 20, 9381.
(
̈
̈
̈
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX