Organometallics
Article
(12) Hauber, S.-O.; Lissner, F.; Deacon, G. B.; Niemeyer, M. Angew.
Chem., Int. Ed. 2005, 44, 5871−5875.
(30) Kagan, G.; Li, W.; Li, D.; Hopson, R.; Williard, P. G. J. Am.
Chem. Soc. 2011, 133, 6596−6602.
(31) Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young,
V. G., Jr.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. Soc. 2003, 125,
11350−11359.
(13) (a) Loh, C.; Seupel, S.; Gorls, H.; Krieck, S.; Westerhausen, M.
̈
Organometallics 2014, 33, 1480−1491. (b) Loh, C.; Seupel, S.; Koch,
A.; Gorls, H.; Krieck, S.; Westerhausen, M. Dalton Trans. 2014, 43,
̈
(32) Several calcium and strontium amido complexes bearing an
alkoxo ligand having both dangling methoxy and olefin side-arms were
synthesized and characterized by XRD crystallography. In these
complexes where the methoxy groups are coordinated to the metal in
the solid state, whereas the olefins are not, small deshieldings (Δδ <
14440−14449.
(14) Deacon, G. B.; Junk, P. C.; Moxey, G. J.; Ruhlandt-Senge, K.; St.
Prix, C.; Zuniga, M. F. Chem. - Eur. J. 2009, 15, 5503−5519.
(15) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.;
Procopiou, P. A. Dalton Trans. 2008, 4474−4481.
(16) Moxey, G. J.; Blake, A. J.; Lewis, W.; Kays, D. L. Eur. J. Inorg.
Chem. 2015, 2015, 5892−5902.
1
0.10 ppm) of H NMR resonances for olefinic Holefin atoms on going
from the proteo-ligand to the complexes are also measured. The
syntheses and characterization of these compounds will be reported in
a forthcoming manuscript.
(33) (a) Bakhmutov, V. I.; Bianchini, C.; Peruzzini, M.; Vizza, F.;
Vorontsov, E. V. Inorg. Chem. 2000, 39, 1655−1660. (b) Fielding, L.
(17) Deacon, G. B.; Forsyth, C. M.; Junk, P. C. J. Organomet. Chem.
2000, 607, 112−119.
(18) Krieck, S.; Gorls, H.; Westerhausen, M. Chem. - Asian J. 2010, 5,
̈
272−277.
Tetrahedron 2000, 56, 6151−6170. (c) Głaszczka, R.; Jazwin
ski, J. J.
́
(19) Williams, R. A.; Hanusa, T. P.; Huffman, J. C. J. Am. Chem. Soc.
1990, 112, 2454−2455.
Mol. Struct. 2013, 1036, 78−79.
(34) Polarization effects should induce downfield shift for Cπ(int)
and upfield shift for Cπ(ext); see: Carpentier, J.-F.; Maryin, V. P.; Luci,
J.; Jordan, R. F. J. Am. Chem. Soc. 2001, 123, 898−909. Moreover, in
(20) For the first Ca-acetylide complex (albeit without Ca-alkyne π-
interaction), see: Burkey, D. J.; Hanusa, T. P. Organometallics 1996,
15, 4971−4976.
1
the 13C NMR spectra ([D6]benzene, 293 K), the JCH coupling
(21) (a) Avent, A. G.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B.
Organometallics 2005, 24, 1184−1188. (b) Barrett, A. G. M.; Crimmin,
M. R.; Hill, M. S.; Hitchcock, P. B.; Lomas, S. L.; Mahon, M. F.;
Procopiou, P. A.; Suntharalingam, K. Organometallics 2008, 27, 6300−
6306. (c) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P.
B.; Lomas, S. L.; Procopiou, P. A.; Suntharalingam, K. Chem. Commun.
2009, 2299−2301. (d) Arrowsmith, M.; Crimmin, M. R.; Hill, M. S.;
Lomas, S. L.; MacDougall, D. J.; Mahon, M. E. Organometallics 2013,
32, 4961−4972.
constants for CHCH2 in [1-Ca]2 (151 and 157 Hz) matched closely
those in the proteo-ligand {RO1}H (152 and 156 Hz).
(35) No indication of the presence of a monomer−dimer equilibrium
was found by 1H DOSY NMR; see: Gennari, M.; Tegoni, M.;
Lanfranchi, M.; Pellinghelli, M. A.; Giannetto, M.; Marchio, L. Inorg.
Chem. 2008, 47, 2223−2232.
(36) It was determined that DOSY NMR can detect the average
diffusion coefficient values for monomer−dimer exchanges in the case
of CuI complexes with N,N′,S,S′ scorpionato ligands; see ref 35. By
contrast, an exchange process between Na-indenide and indene could
not be detected by NMR diffusion experiments; see: Neufeld, R.;
Stalke, D. Chem. Sci. 2015, 6, 3354−3364.
(22) Stasch, A.; Sarish, S. P.; Roesky, H. W.; Meindl, K.;
Dall’Antonia, F.; Schulz, T.; Stalke, D. Chem. - Asian J. 2009, 4,
1451−1457.
(23) Westerhausen, M.; Digeser, M.; Noth, H.; Seifert, T.; Pfitzner,
̈
(37) Due to its structural complexity, we are unable to explain further
the pattern of resonances and proceed to assignment for this complex.
All indications point to the existence of a multinuclear compound also
in solution. Several different silicon environments exist, some of which
are involved in very strong SiH···Ca agostic interactions as attested to
A. J. Am. Chem. Soc. 1998, 120, 6722−6725.
(24) Buchanan, W. D.; Allis, D. G.; Ruhlandt-Senge, K. Chem.
Commun. 2010, 46, 4449−4465.
(25) (a) Sarazin, Y.; Rosç a, D.; Poirier, V.; Roisnel, T.; Silvestru, A.;
1
by the 2D H−29Si HMQC NMR experiment.
Maron, L.; Carpentier, J.-F. Organometallics 2010, 29, 6569−6577.
(b) Liu, B.; Roisnel, T.; Guegan, J.-P.; Carpentier, J.-F.; Sarazin, Y.
a, S.-C.;
́
(38) Frøyen, P.; Juvvik, P. Tetrahedron Lett. 1995, 36, 9555−9558.
(39) The value indicative of η2-Ca···olefin interactions was set to 3.13
Å in: Felisa Zuniga, M.; Deacon, G. B.; Ruhlandt-Senge, K. Inorg.
Chem. 2008, 47, 4669−4681.
Chem. - Eur. J. 2012, 18, 6289−6301. (c) Romero, N.; Rosc
̧
Sarazin, Y.; Carpentier, J.-F.; Vendier, L.; Mallet-Ladeira, S.; Dinoi, C.;
Etienne, M. Chem. - Eur. J. 2015, 21, 4115−4125.
(26) For a discussion on the cation−dipole nature of contacts
between metallic ions and fluorine, see: (a) Takemura, H.; Nakashima,
S.; Kon, N.; Yasutake, M.; Shinmyozu, T.; Inazu, T. J. Am. Chem. Soc.
2001, 123, 9293−9298. For applications in lanthanide (Ln)
chemistry, detailing the C−F→Ln interactions, see: (b) Yin, H.;
Zabula, A. V.; Schelter, E. J. Dalton Trans. 2016, 45, 6313−6323.
(c) Yin, H.; Carroll, P. J.; Schelter, E. J. Inorg. Chem. 2016, 55, 5684−
5692. Considering the many similarities between Ae2+ and Ln3+ ions,
we think it most appropriate to adopt this notation for Ae complexes.
(40) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763−1765.
(41) Hashmi, A. S. K. Synthesis of Allenes by Isomerization
Reactions. In Modern Allene Chemistry; Hashmi, A. S. K., Ed.; WILEY-
VCH: Weinheim, 2004; pp 3−36 and references therein.
(42) Nakano, M.; Novak, B. M. Isomerization of allenes to alkynes
with an alkaline-earth metal hydride containing catalyst. U.S. Patent
5,990,368 A, 1999.
(43) Rochat, R.; Yamamoto, K.; Lopez, M. J.; Naga, H.; Tsurugi, H.;
Mashima, K. Chem. - Eur. J. 2015, 21, 8112−8120.
(44) Attempts to grow crystals of a THF-solvated species by
crystallization of [1-Ca]2 from a pentane solution containing
approximately 1−2 equiv of THF per metal returned crystalline [1-
Ca]2, whereas no crystal could be isolated when 10 equiv of THF was
used; see ref 7.
(27) (a) Rosç a, S.-C.; Roisnel, T.; Dorcet, V.; Carpentier, J.-F.;
Sarazin, Y. Organometallics 2014, 33, 5630−5642. (b) Sarazin, Y.; Liu,
B.; Roisnel, T.; Maron, L.; Carpentier, J.-F. J. Am. Chem. Soc. 2011,
133, 9069−9087.
(28) The solution NMR data for [1-Ca]2−[4-Ca]2 and [1-Sr]2 are
complicated. For instance, except for the regions of olefinic hydrogens
1
and −N(SiMe2H)2 moieties, the H NMR spectrum of [1-Ca]2 could
hardly be exploited due to the fluxional behavior between two
distinguishable forms A and B in conformational exchange; the
scenario was identical for [2-Ca]2 and [3-Ca]2. Also, we have found no
way of knowing exactly the pattern of C−F→Ca interactions in
solution. We cannot be certain either of the dynamic processes that are
occurring in solution or about the exact structure of the compound in
solution.
(29) Michel, O.; Tornroos, K. W.; Maichle-Mossmer, C.; Anwander,
̈
̈
R. Chem. - Eur. J. 2011, 17, 4964−4967.
I
Organometallics XXXX, XXX, XXX−XXX