N. Arockia Samy, V. Alexander / Inorganica Chimica Acta 384 (2012) 247–254
253
involves two electrons for each one of the dinuclear complexes,
Appendix A. Supplementary material
which are attributed to two simultaneous independent one-electron
metal-centered processes. This indicates that the electrostatic inter-
action between the metal centers is negligible due to the large dis-
tance of separation of the Ru(II) centers. The occurrence of a single
oxidation wave for these complexes confirms that each metal-cen-
tered subunit is electronically ‘‘isolated’’ from the electrochemical
Supplementary data associated with this article can be found, in
References
viewpoint. Oxidation of these complexes stabilizes the metal d -
p
orbital directly and the ligand p⁄-orbital indirectly through charge
[1] (a) V. Balzani, G. Bergamini, F. Marchioni, P. Ceroni, Coord. Chem. Rev. 250
(2006) 1254; (b) C. Kaes, A. Katz, M.W. Hosseini, Chem. Rev. 100 (2000) 3553.
[2] (a) N. Chanda, R.H. Laye, S. Chakraborty, R.L. Paul, J.C. Jeffrey, M.D. Ward, G.K.
Lahiri, J. Chem. Soc., Dalton Trans. 18 (2002) 3496; (b) S.M. Couchman, J.
Dominguez-Vera, J.C. Jeffery, C.A. McKee, S. Nevitt, M. Pohlman, C.M. White,
M.D. Ward, Polyhedron 17 (1998) 3541.
[3] (a) F. Scandola, M.T. Indelli, C. Chiorboli, C.A. Bignozzi, Top. Curr. Chem. 158
(1990) 73; (b) V. Balzani, F. Scandola, Supramolecular Photochemistry,
Harwood, Chichester, 1991.; (c) J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S.
Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni, Chem.
Rev. 94 (1994) 993; (d) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni,
Chem. Rev. 96 (1996) 759.
[4] (a) T.J. Meyer, Pure Appl. Chem. 58 (1986) 1193; (b) A. Juris, V. Balzani, F.
Barigelletti, S. Campagna, P. Belser, A. Zelewsky, Coord. Chem. Rev. 84 (1988)
85; (c) V. Balzani, F. Bolletta, M.T. Gandolfi, M. Maestri, Top. Curr. Chem. 75
(1978) 1; (d) K. Kalyanasundaram, Photochemistry of Polypyridine and
Porphyrin Complexes, Academic Press, London, 1991.
[5] (a) V. Balzani, A. Juris, Coord. Chem. Rev. 211 (2001) 97; (b) J.G. Vos, J.M. Kelly,
Dalton Trans. (2006) 4869; (c) G.R. Newkome, A.K. Patri, E. Holder, U.S.
Schubert, Eur. J. Org. Chem. 2 (2004) 235.
interactions. Subsequent d –p⁄ back bonding further stabilizes the
p
metal d -orbital but destabilizes the ligand p⁄-orbital [26] and
p
hence the oxidation response of the dinuclear complexes shifts pos-
itively by ca. 40 mV compared to that of the mononuclear complex
[Ru(bpy)2(PIP)]2+. On reduction, several ill-behaved processes take
place and adsorption of the compounds on the electrode surface also
occurs. However, the first reduction potential is still safely measured
which is assigned to the reduction of the bridging ligand although
more precise assignment could not be made. The first reduction,
usually expected to involve the ligand having the most stable lowest
unoccupied molecular orbital (LUMO) [26,27], obviously L here, ap-
pears irreversible and the other two successive reductions are char-
acteristic of the bpy/phen ligands [4b,27b–f,28]. It is concluded that
reduction of the complexes occur first on the bridging ligand and
then on the bpy/phen ligands.
[6] (a) V. Balzani, L. Moggi, F. Scandola, in: V. Balzani (Ed.), Supramolecular
Photochemistry, Reidel, Dordrecht, The Netherlands, 1987, p. 1; (b) J.-M. Lehn,
Angew. Chem., Int. Ed. Engl. 27 (1988) 89; (c) H. Durr, E. Bouas-Laurent (Eds.),
Photochromism: Molecules and Systems, Elsevier, Amsterdam, The
Netherlands, 1990; (d) J.-M. Lehn, Angew. Chem., Int. Ed. Engl. 29 (1990) 1304.
[7] (a) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E.C.
Constable, A.M.W. Cargill Thompson, J. Chem. Soc., Chem. Commun. (1993)
942; (b) Y. Kim, C.M. Lieber, Inorg. Chem. 28 (1989) 3990.
[8] (a) M. Haga, T. Ano, K. Kano, S. Yamabe, Inorg. Chem. 30 (1991) 3843; (b) M.A.
Haga, M. Ishizuya, T. Kanesugi, T. Yubaka, D. Sakiyama, J. Fees, W. Kaim, Indian
J. Chem. A 42 (2003) 2290; (c) M. Haga, T. Takasugi, A. Tomie, M. Ishizuga, T.
Yamada, M.D. Hossain, M. Inoue, Dalton Trans. (2003) 2069; (d) M.D. Hossain,
M. Haga, B. Gholamkhass, K. Nozaki, M. Tsushima, N. Ikeda, T. Ohno, Collect.
Czech. Chem. Commun. 66 (2001) 307; (e) M.D. Hossain, R. Ueno, M. Haga,
Inorg. Chem. Commun. 3 (2000) 35; (f) M. Ali, H. Sato, M.A. Haga, K. Tanaka, A.
Yoshimura, T. Ohno, Inorg. Chem. 37 (1998) 6176; (g) M. Haga, M.M. Ali, H.
Sato, H. Monojushiro, K. Nozaki, K. Kano, Inorg. Chem. 37 (1998) 2320; (h) K.
Mizushima, M. Nakaura, S.B. Park, H. Nishiyama, H. Monjushiro, K. Haraja, M.
Haga, Inorg. Chim. Acta 261 (1997) 175; (i) M.A. Haga, M.M. Ali, S. Koseki, K.
Fujimoto, A. Yoshimura, K. Nozaki, T. Ohno, K. Nakajima, Inorg. Chem. 35
(1996) 3335; (j) M.A. Haga, M. Ali, R. Arakawa, Angew. Chem., Int. Ed. Engl. 35
(1996) 76.
[9] (a) M. Marcaccio, F. Paolucci, C. Paradisi, S. Roffia, C. Fontanesi, L.J. Yellowlees,
S. Serroni, S. Campagna, G. Denti, V. Balzani, J. Am. Chem. Soc. 121 (1999)
10081; (b) S. Campagna, S. Serroni, F. Puntoriero, F. Loiseau, L. De Cola, C.J.
Kleverlaan, J. Becher, A.P. Sorenson, P. Hascoat, N. Thorup, Chem. Eur. J. 8
(2002) 4461; (c) S. Swavey, K.J. Brewer, Inorg. Chem. 41 (2002) 4044; (d) D.S.
Seneviratne, J. Uddin, V. Swayambunathan, H.B. Schegel, T.F. Endicott, Inorg.
Chem. 41 (2002) 1502; (e) F. Puntoriero, S. Serroni, A. Licciardello, M. Venturi,
A. Juris, V. Ricevutto, S. Campagna, J. Chem. Soc., Dalton Trans. (2001) 1035.
[10] (a) M.J. Han, L.H. Gao, Y.Y. Lu, K.Z. Wang, J. Phys. Chem. B (2006) 2364;
(b) A. Hatzidimitriou, A. Gourdon, J. Devillers, J.P. Launay, E. Mena, E. Amouyal,
Inorg. Chem. 35 (1996) 2212.
[11] (a) W.R. Browne, R. Hage, J.G. Vos, Coord. Chem. Rev. 250 (2006) 1653; (b) M.H.
Klingele, S. Brooker, Coord. Chem. Rev. 241 (2003) 119; (c) S. Fanni, T.E. Keyes,
C.M. O’Connor, H. Hughes, R. Wang, J.G. Vos, Coord. Chem. Rev. 208 (2000) 77.
[12] C. Di Pietro, S. Serroni, S. Campagna, M.T. Gandolfi, R. Ballardini, S. Fanni, W.R.
Browne, J.G. Vos, Inorg. Chem. 41 (2002) 2871.
4. Conclusions
A new imidazo[4,5-f][1,10]phenanthroline-based dinucleating
bridging ligand 1,2-bis(2-(1H-imidazo[4,5-f][1,10]phenanthrolin-
2-yl)phenoxy)ethane and its dinuclear Ru(II) polypyridine com-
plexes have been synthesized and characterized by NMR tech-
niques. The bridging ligand readily form dinuclear Ru(II)
complexes and its symmetric nature ensures the formation of
dinuclear complexes with equivalent metal centers. The methodol-
ogy developed in the present work can be exploited to synthesize
similar dinuclear heteroleptic polypyridine complexes with a vari-
ety of ancillary ligands. Absorption spectra and luminescent prop-
erties have been studied and these properties of the Ru(II) species
are dominated by MLCT transitions and excited states. The results
also show that each metal-based subunit retains its own spectro-
scopic properties in the dinuclear arrays. The synthetic strategy re-
ported in the present work could be exploited to develop new
bridging ligands with multiple imidazo[4,5-f][1,10]phenanthroline
coordinating moieties by the reaction of polyaldehyde functional-
ized molecules with 1,10-phenanthroline-5,6-dione. Such ligands
would enable the synthesis of polynuclear complexes of higher
nuclearity and supramolecular assemblies. The heteroleptic dinu-
clear Ru(II) complexes could be used to construct polynuclear com-
plexes by using the modular synthetic approach in coordination
compounds by exploiting the coordinating ability of the imidazole
nitrogen donors of imidazo[4,5-f][1,10]phenanthroline.
[13] Y. Li, J.C. Huffman, A.H. Flood, Chem. Commun. 26 (2007) 2692.
[14] B.S. Furniss, A.J. Hannaford, V. Rogers, P.W. Smith, A.R. Tatchell, Vogel’s
Textbook of Practical Organic Chemistry, fifth ed., Pearson Education, Delhi,
2004.
[15] M. Yamada, Y. Tanaka, Y. Yoshimoto, S. Kuroda, I. Shimao, Bull. Chem. Soc. Jpn.
65 (1992) 1006.
Acknowledgments
[16] B.P. Sullivan, D. J Salmon, T.J. Meyer, Inorg. Chem. 17 (1978) 3334.
[17] J.V. Casper, E.M. Kober, B.P. Sullivan, T.J. Meyer, J. Am. Chem. Soc. 104 (1982)
630.
[18] J.R. Lakowicz, Principles of Luminescence Spectroscopy, third ed., Springer,
New York, 2006.
[19] L.G. Armstrong, L.F. Lindoy, Inorg. Chem. 14 (1975) 1322.
[20] E.A. Steck, A.R. Day, J. Am. Chem. Soc. 65 (1943) 452.
[21] (a) H. Chao, B.H. Ye, H. Li, R.H. Li, J.Y. Zhou, L.N. Ji, Polyhedron 19 (2000) 1975;
(b) H. Chao, R.-H. Li, C.-W. Jiang, H. Li, L.-N. Ji, X.-Y. Li, J. Chem. Soc., Dalton
Trans. (2001) 1920; (c) J.-Z. Wu, B.-H. Ye, L. Wang, L.-N. Ji, J.-Y. Zhou, R.-H. Li,
Z.-Y. Zhou, J. Chem. Soc., Dalton Trans. (1997) 1395.
This research work was carried out with the financial support
from the Department of Science and Technology (DST), Govern-
ment of India. We thank Dr. Moni, Sophisticated Analytical Instru-
mentation Facility (SAIF), IIT-M, Chennai, for his help in recording
NMR spectra. Thanks are due to the SAIF, CDRI, Lucknow, for
recording the mass spectra. We also thank the National Centre
for Ultrafast Processes, University of Madras, Chennai 600113, for
providing the facilities to study the emission lifetimes.