5
98
LUMO = EHOMO + E
Y. Zhan et al. / Tetrahedron Letters 54 (2013) 594–599
(E
g
). The LUMO energy levels were À2.64, À2.35,
F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. J. Am. Chem. Soc.
000, 122, 7467; (d) Wasielewski, M. R. Chem. Rev. 1992, 92, 435; (e) Imahori,
2
À2.23 eV for An-OCZ1, An-OCZ2, and An-OCZ3, respectively. Fig-
ures S2–S4 showed multiple cyclic voltammograms, which gave
very weak shifts (<1 mV) after 10 scan cycles for An-OCZn. It indi-
cated that the obtained oligocarbazoles-functionalized anthra-
cenes exhibited excellent electrochemical stability, and could
withstand the redox cycles for many times. We deduced that the
excellent electrochemical stability for An-OCZn might be due to
the introduction of substitutes in 3,6-positions of carbazole units,
which would restrain the electrochemical polymerizations. Thus,
these compounds might become potential candidates applied in
electrooptic devices.
H.; Sakata, Y. Adv. Mater. 1997, 9, 537.
6
.
(a) Ma, D. G.; Hu, Y. F.; Zhang, Y. G.; Wang, L. X.; Jing, X. B.; Wang, F. S.; Lupton,
J. M.; Samuel, I. D. W.; Lo, S. C.; Burn, P. L. Synth. Met. 2003, 137, 1125; (b)
Lupton, J. M.; Samuel, I. D. W.; Beavington, R.; Burn, P. L.; Bässler, H. Adv. Mater.
2001, 13, 258; (c) Frampton, M. J.; Beavington, R.; Lupton, J. M.; Samuel, I. D.
W.; Burn, P. L. Synth. Met. 2001, 121, 1671.
7. (a) Segura, J. L.; Martín, N. J. Mater. Chem. 2000, 10, 2403; (b) Otsubo, T.; Aso, Y.;
Takimiya, K. J. Mater. Chem. 2002, 12, 2565; (c) Lukevics, E.; Arsenyan, P.;
Pudova, O. Heterocycles 2003, 60, 663; (d) Luo, J.; Qu, H. M.; Yin, J.; Zhang, X. J.;
Huang, K. W.; Chi, C. Y. J. Mater. Chem. 2009, 19, 8202.
8. Audebert, P.; Catel, J. M.; Guyarda, L.; Hapiot, P.; Coustumer, G. L. Synth. Met.
1
999, 101, 642.
Zhang, Y. L.; Ren, P. H.; Zhang, H. C.; Guo, E. Q.; Yang, W. J. J. Lumin. 2010, 130,
27.
9
.
5
Thermal stabilities of these compounds were examined by dif-
ferential scanning calorimetry (DSC) and thermogravimetric analy-
10. (a) Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, L. F.; Bradley, D.
D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695; (b) Klaerner, G.; Miler, R.
D. Macromolecules 2007, 1998, 31; (c) Zeng, L. C.; Yan, F.; Wei, S. K.-H.; Culligan,
S. W.; Chen, S. H. Adv. Funct. Mater. 1978, 2009, 19.
11. (a) Sailer, M.; Franz, A. W.; Müller, T. J. J. Chem. Eur. J. 2008, 14, 2602; (b) Qiu, X.
P.; Lu, R.; Zhou, H. P.; Zhang, X. F.; Xu, T. H.; Liu, X. L.; Zhao, Y. Y. Tetrahedron
Lett. 2007, 48, 7582.
sis (TGA) in N
and Table 1, An-OCZn exhibited high melting points (T
range of 107–274 °C. Moreover, T of An-OCZn decreased with
the increase in the number of carbazole units. Based on TGA re-
sults, we could find that the decomposition temperatures (T , cor-
responding to a 5% weight loss) of An-OCZn were in the range of
2
at a heating rate of 10 °C/min. As shown in Figure 4
m
) in the
m
12. (a) Grigalevicius, S.; Zhang, B. H.; Xie, Z. Y.; Forster, M.; Scherf, U. Org. Electron.
d
2011, 12, 2253; (b) Diamant, Y.; Chen, J.; Han, H.; Kamenev, B.; Tsybeskov, L.;
Grebel, H. Synth. Met. 2005, 151, 202.
1
1
3. Paliulis, O.; Ostrauskaite, J.; Gaidelis, V.; Jankauskas, V.; Strohriegl, P. Macromol.
Chem. Phys. 2003, 204, 1706.
4. Drolet, N.; Morin, J. F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc, M. Adv. Funct.
Mater. 2005, 15, 1671.
4
10–462 °C, indicating much higher thermal stability.
In summary, we have synthesized three new well-defined
monodisperse oligocarbazoles-functionalized anthracenes An-
OCZn (n = 1, 2, 3) via Suzuki cross-coupling reaction between the
brominated oligocarbazoles and 9,10-bis(4,4,5,5-tetramethyl
1
1
5. Ren, M. G.; Guo, H. J.; Qi, F.; Song, Q. H. Org. Biomol. Chem. 2011, 9, 6913.
6. (a) Xu, T. H.; Lu, R.; Liu, X. L.; Chen, P.; Qiu, X. P.; Zhao, Y. Y. J. Org. Chem. 1809,
2
008, 73; (b) Liu, X. L.; Lu, R.; Xu, T. H.; Xu, D. F.; Zhan, Y.; Chen, P.; Qiu, X. P.;
1
,3,2-dioxaborolan-2-yl)anthracene. It is interesting that the intro-
Zhao, Y. Y. Eur. J. Org. Chem. 2009, 53; (c) Xu, T. H.; Lu, R.; Liu, X. L.; Chen, P.;
Qiu, X. P.; Zhao, Y. Y. Eur. J. Org. Chem. 2008, 1065; (d) Xu, T. H.; Lu, R.; Liu, X. L.;
Zheng, X. Q.; Qiu, X. P.; Zhao, Y. Y. Org. Lett. 2007, 9, 797; (e) Xu, T. H.; Lu, R.;
Qiu, X. P.; Liu, X. L.; Xue, P. C.; Xue, P. C.; Tan, C. H.; Bao, C. Y.; Zhao, Y. Y.; Eur, J.
Org. Chem. 2006, 17, 4014; (f) Xu, T. H.; Lu, R.; Jin, M.; Qiu, X. P.; Xue, P. C.; Bao,
C. Y.; Zhao, Y. Y. Tetrahedron Lett. 2005, 46, 6883.
duction of oligocarbazoles into 9,10-positions of anthracene can
prevent the formation of excimers so that An-OCZn can emit in-
tense blue light with high fluorescence quantum yields of 0.66–
0
.76 against quinine sulfate as a standard. On the other hand, the
1
7. (a) Zhang, G. Q.; Yang, G. Q.; Wang, S. Q.; Chen, Q. Q.; Ma, J. S. Chem. Eur. J. 2007,
An-OCZn showed superior electrochemical and thermal stabilities,
which made it possible that the obtained oligomers became good
candidates as novel blue-emitting materials employed in OLEDs
or related devices with good stability.
1
3, 3630; (b) Shi, J. M.; Tang, C. W. Appl. Phys. Lett. 2002, 17, 3201.
18. (a) Molard, Y.; Bassani, D. M.; Desvergne, J. P.; Moran, N.; Tucker, J. H. R. J. Org.
Chem. 2006, 71, 8523; (b) Neelakandan, P. P.; Ramaiah, D. Angew. Chem., Int. Ed.
2
008, 47, 8407.
9. Klärner, G.; Davey, M. H.; Chen, W.-D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998,
0, 993.
20. Kim, Y. H.; Jeong, H. C.; Kim, S. H.; Yang, K.; Kwon, S. K. Adv. Funct. Mater. 2005,
5, 1799.
1
1
Acknowledgments
1
2
1. Zhou, H. P.; Lu, R.; Zhao, X.; Qiu, X. P.; Xue, P. C.; Liu, X. L.; Zhang, X. F.
This work is financially supported by the National Natural Sci-
ence Foundation of China (51073068), 973 Program
Tetrahedron Lett. 2010, 51, 5287.
22. (a) Roberto, G.; Antonio, D. A.; Giuseppe, R.; Gian, P. S.; Piero, M.; Punalisa, C.;
Domenico, A.; Eugenio, A.; Giuseppe, C.; Cosimo, F. N. Tetrahedron 2006, 62,
(
(
2009CB939701), NSFC-JSPS Scientific Cooperation Program
21011140069) and Open Project of State Key Laboratory of Supra-
627; (b) Brunner, K.; Dijken, A. V.; Börner, H.; Bastiaansen, J. J. A. M.; Kiggen, N.
M. M.; Langeveld, B. M. W. J. Am. Chem. Soc. 2004, 126, 6035.
molecular Structure and Materials (SKLSSM201203).
23. Yang, X. C.; Lu, R.; Gai, F. Y.; Xue, P. C.; Zhan, Y. Chem. Commun. 2010, 46, 1088.
24. Molard, Y.; Bassani, D. M.; Desvergne, J.-P.; Moran, N.; Tucker, J. H. R. J. Org.
Chem. 2006, 71, 8523.
5. Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, J.; D’iorio, M. Chem. Mater. 2004, 16, 2165.
Supplementary data
2
2
2
6. Thelakkat, M.; Schmidt, H.-W. Adv. Mater. 1998, 10, 219.
7. An-OCZ1: 1H NMR (500 MHz, TMS, CDCl
): d (ppm) = 8.24 (s, 2H), 8.08 (t,
3
J = 6.5 Hz, 2H), 7.83–7.81 (m, 4H), 7.64 (dd, J = 2.0 Hz, J = 8.5 Hz, 2H), 7.60 (d,
J = 8.5 Hz, 2H), 7.52–7.49 (m, 4H), 7.31–7.29 (m, 4H), 7.24–7.22 (m, 2H), 4.44 (t,
J = 7.0 Hz, 4H), 2.05–1.99 (m, 4H), 1.45–1.24 (m, 20H), 0.90 (t, J = 6.5 Hz, 6H)
version,
at
the most important compounds described in this article.
(
1
1
Fig. S14) 13C NMR (125 MHz, CDCl
3
) d (ppm) = 140.96, 139.89, 137.84, 130.73,
29.41, 129.06, 129.03, 125.87, 124.80, 123.25, 123.21, 122.96, 122.94, 122.77,
20.54, 120.52, 118.96, 108.88, 108.56, 108.53, 43.41, 31.86, 29.72, 29.47,
À1
References and notes
29.27, 29.18, 27.48, 22.67, 14.13 (Fig. S15). IR (KBr, cm ): 2930, 2850, 1650,
1
C
490, 1470, 1380, 1150, 1120, 804, 748. Elemental analysis calculated for
: C, 88.48; H, 7.70; N, 3.82. Found: C, 88.43; H, 7.69; N, 3.88. MS, m/z:
54 56 2
H N
1
2
3
4
.
.
.
.
(a) Schulze, K.; Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier, E.; Reinold, E.;
Bäuerle, P. Adv. Mater. 2006, 18, 2872; (b) Segura, J. L.; Martín, N.; Guldi, D. M.
Chem. Soc. Rev. 2005, 34, 31.
(a) Nakanishi, H.; Sumi, N.; Ueno, S.; Takimiya, K.; Aso, Y.; Otsubo, T.;
Komaguchi, K.; Shiotani, M.; Ohta, N. Synth. Met. 2001, 119, 413; (b) Nakanishi,
H.; Sumi, N.; Aso, Y.; Otsubo, T. J. Org. Chem. 1998, 63, 8632.
(a) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359; (b)
Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99; (c)
Horowitz, G. J. Mater. Chem. 1999, 9, 2021.
(a) Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Fréchet, J.
M. J. J. Am. Chem. Soc. 2000, 122, 12385; (b) Furuta, P.; Brooks, J.; Thompson, M.
E.; Fréchet, J. M. J. J. Am. Chem. Soc. 2003, 125, 13165; (c) Holder, E.; Langeveld,
B. M. W.; Schubert, U. S. Adv. Mater. 2005, 17, 1109; (d) Bolink, H. J.; Barea, E.;
Costa, R. D.; Sudhakar, S.; Zhen, C.; Sellinger, A. Org. Electron. 2008, 9, 155.
(a) Hutten, P. F. V.; Wideman, J.; Meetsma, A.; Hadziioannou, G. J. Am. Chem.
Soc. 1999, 121, 5910; (b) Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.;
Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716; (c)
Eckert, J. F.; Nicoud, J. F.; Nierengarten, J. F.; Liu, S.; Echegoyen, L.; Barigelletti,
1
calcd 733.0, found: 732.2 (Fig. S16). Mp >250.0 °C. An-OCZ2:
500 MHz, TMS, CDCl ): d (ppm) = 8.45–8.42 (m, 4H), 8.37 (s, 2H), 8.17 (d,
J = 8.0 Hz, 2H), 7.93–7.83 (m, 6H), 7.84 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz,
H NMR
(
3
2
4
4
H), 7.67–7.62 (m, 4H), 7.51–7.46 (m, 4H), 7.44–7.42 (m, 2H), 7.37–7.35 (m,
H), 7.27–7.23 (m, 2H), 4.52 (t, J = 7.5 Hz, 4H), 4.36–4.33 (m, 4H), 2.13–2.07 (m,
H), 1.94–1.91 (m, 4H), 1.49–1.27 (m, 40H), 0.94 (t, J = 6.0 Hz, 6H), 0.90–0.86
(
m, 6H) (Fig. S17) 13C NMR (125 MHz, CDCl
3
) d (ppm) = 140.91, 140.36, 140.06,
1
1
1
2
39.55, 133.58, 133.25, 130.77, 129.48, 129.16, 127.46, 125.78, 125.62, 125.43,
24.83, 123.42, 123.39, 123.22, 123.06, 120.45, 119.09, 119.06, 118.89, 118.72,
09.10, 108.90, 108.74, 108.67, 108.65, 43.56, 43.23, 31.89, 31.81, 29.72, 29.51,
9.41, 29.29, 29.26, 29.19, 29.05, 27.52, 27.36, 22.68, 22.61, 14.14, 14.08
À1
(
Fig. S18). IR (KBr, cm ): 2930, 2850, 1650, 1490, 1470, 1380, 1150, 1120, 804,
748. Elemental analysis calculated for C94
102 4
H N : C, 87.67; H, 7.98; N, 4.35.
Found: C, 87.62; H, 8.02; N, 4.41. MS, m/z: calcd 1287.8, found: 1286.2
5
.
1
(
(
(
3
Fig. S19). Mp: 184.0–186.0 °C. An-OCZ3: H NMR (500 MHz, TMS, CDCl ): d
ppm) = 8.49–8.36 (m, 10H), 8.18–8.13 (m, 2H), 7.94–7.92 (m, 2H), 7.89–7.77
m, 10H), 7.68–7.60 (m, 6H), 7.51–7.38 (m, 10H), 7.34–7.31 (m, 4H), 7.23–7.19