ChemComm
Page 4 of 4
DOI: 10.1039/C5CC03007B
1 (a) L. E. Buerkle and S. J. Rowan, Chem. Soc. Rev., 2012, 41, 6089; (b)
S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev., 2014, 114,
1973.
23 The COOH Proton was calculated by geometrical methods and refined
as a riding model, which means the proton appears close to pyridyl
nitrogen with a higher probability.
2 G. C. Yu, X. Z. Yan, C. Y. Han and F. H. Huang, Chem. Soc. Rev., 60 24 (a) S. M. Landge, E. Tkatchouk, D. Benitez, D. A. Lanfranchi, M.
5
10
15
20
2013, 42, 6697.
Elhabiri, W. A. Goddard and I. Aprahamian, J. Am. Chem. Soc., 2011,
133, 9812; (c) X. Su and I. Aprahamian, Org. Lett., 2011, 13, 30; (d) D.
Ray, J. T. Foy, R. P. Hughes and I. Aprahamian, Nat. Chem., 2012, 4,
757; (e) L. A. Tatum, X. Su and I. Aprahamian, Accounts. Chem. Res.,
2014, 47, 2141.
3 M. D. SegarraꢀMaset, V. J. Nebot, J. F. Miravet and B. Escuder, Chem.
Soc. Rev., 2013, 42, 7086.
4 (a) G. O. Lloyd and J. W. Steed, Nat. Chem., 2009, 1, 437; (b) S. C.
Bremmer, A. J. McNeil and M. B. Soellner, Chem. Commun., 2014, 50,
1691; (c) Q. Lin, B. Sun, Q. P. Yang, Y. P. Fu, X. Zhu, Y. M. Zhang
and T. B. Wei, Chem. Commun., 2014, 50, 10669.
65
70
75
80
25 J. E. Eldridge and J. D. Ferry, J. Phys. Chem., 1954, 58, 992.
26 (a) K. Ogawa, H. Suzuki and M. Futakami, J. Chem. Soc. Perk. T. 2.,
1988, 39; (b) D. A. Shultz and M. A. Fox, J. Am. Chem. Soc., 1989,
111, 6311; (c) J. Mei, Y. N. Hong, J. W. Y. Lam, A. J. Qin, Y. H. Tang
and B. Z. Tang, Adv. Mater., 2014, 26, 5429; (d) G. D. Liang, J. W. Y.
Lam, W. Qin, J. Li, N. Xie and B. Z. Tang, Chem. Commun., 2014, 50,
1725.
5 B. Rybtchinski, Acs Nano, 2011, 5, 6791.
6 A. Vintiloiu and J. C. Leroux, J. Control Release., 2008, 125, 179.
7 R. V. Ulijn, N. Bibi, V. Jayawarna, P. D. Thornton, S. J. Todd, R. J.
Mart, A. M. Smith and J. E. Gough, Materials Today, 2007, 10, 40.
8 J. H. van Esch, Langmuir, 2009, 25, 8392.
9 M. George, G. Tan, V. T. John and R. G. Weiss, Chem. Eur. J., 2005,
11, 3243.
27 (a) T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe and K. Araki, Angew.
Chem. Int. Ed., 2008, 47, 9522; (b) R. R. Wei, P. S. Song and A. J.
Tong, J. Phys. Chem. C, 2013, 117, 3467.
28 Based on 1H NMR spectroscopy (Fig. S8, ESI†) the methyl group in 2
disrupts the intramolecular Hꢀbond between the OꢀH and pyridyl
nitrogen. We hypothesize that this results from the steric congestion
caused by the methyl group, which prevents the pyridyl ring and
COOH group from being coꢀplanar.
10 (a) O. Gronwald and S. Shinkai, Chem. Eur. J., 2001, 7, 4328; (b) K.
Pandurangan, J. A. Kitchen, S. Blasco, F. Paradisic and T.
Gunnlaugsson, Chem. Commun., 2014, 50, 10819.
11 A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem.
Int. Ed., 2008, 47, 8002.
12 D. Buenger, F. Topuz and J. Groll, Prog. Polym. Sci., 2012, 37, 1678.
25 13 (a) A. Wada, S. Tamaru, M. Ikeda and I. Hamachi, J. Am. Chem. Soc.,
2009, 131, 5321; (b) U. Maitra, S. Mukhopadhyay, A. Sarkar, P. Rao
and S. S. Indi, Angew. Chem. Int. Ed., 2001, 40, 2281.
29 Unfortunately we could not grow crystals of 2 suitable for Xꢀray
crystallography.
30 The dihedral angle between the pyridyl ring and the phenyl ring is
20.904(1)o.
14 (a) L. A. Estroff and A. D. Hamilton, Chem. Rev., 2004, 104, 1201; (b)
S. Manna, A. Saha and A. K. Nandi, Chem. Commun., 2006, 4285; (c) 85 31 L. Rajput, N. Jana and K. Biradha, Crystal Growth & Design, 2010,
30
S. Bhuniya and B. H. Kim, Chem. Commun., 2006, 1842; (d) H. Shao
and J. R. Parquette, Chem. Commun., 2010, 46, 4285; (e) D. J. Adams,
Macromol. Biosci., 2011, 11, 160; (f) P. K. Sukul, D. Asthana, P.
Mukhopadhyay, D. Summa, L. Muccioli, C. Zannoni, D. Beljonne, A.
E. Rowan and S. Malik, Chem. Commun., 2011, 47, 11858.
10, 4565.
32 Other organic amines (Fig. S21, ESI†) can also break the gel structure.
33 The addition of excess acid also leads to gel collapse (Fig. S21, ESI†)
through the protonation of the pyridyl ring, which disrupts important
intermolecular Hꢀbonds (Fig. S13c, ESI†).
90
35 15 (a) T. H. Kim, J. Seo, S. J. Lee, S. S. Lee, J. Kim and J. H. Jung,
Chem. Mater., 2007, 19, 5815; (b) M. L. Ma, Y. Kuang, Y. Gao, Y.
Zhang, P. Gao and B. Xu, J. Am. Chem. Soc., 2010, 132, 2719; (c) A.
Griffith, T. J. Bandy, M. Light and E. Stulz, Chem. Commun., 2013,
49, 731; (d) S. Bhowmik, B. N. Ghosh, V. Marjomaki and K. Rissanen,
34 M. Ikeda, T. Yoshii, T. Matsui, T. Tanida, H. Komatsu and I.
Hamachi, J. Am. Chem. Soc., 2011, 133, 1670.
35 J. Karovicova and Z. Kohajdova, Chemical Papers, 2005, 59, 70.
36 C. RuizꢀCapillas and F. JimenezꢀColmenero, Crit. Rev. Food Sci.,
2004, 44, 489.
95
40
45
50
J. Am. Chem. Soc., 2014, 136, 5543; (e) W. Ji, G. F. Liu, M. X. Xu, X.
Q. Dou and C. L. Feng, Chem. Commun., 2014, 50, 15545.
16 X. Su and I. Aprahamian, Chem. Soc. Rev., 2014, 43, 1963.
17 (a) G. H. Deng, C. M. Tang, F. Y. Li, H. F. Jiang and Y. M. Chen,
Macromolecules., 2010, 43, 1191; (b) D. D. McKinnon, D. W.
Domaille, J. N. Cha and K. S. Anseth, Adv. Mater., 2014, 26, 865.
18 J. G. Hardy, X. Y. Cao, J. Harrowfield and J. M. Lehn, New J. Chem.,
2012, 36, 668.
19 (a) Y. M. Zhang, Q. Lin, T. B. Wei, X. P. Qin and Y. Li, Chem.
Commun., 2009, 6074; (b) J. Boekhoven, J. M. Poolman, C. Maity, F.
Li, L. van der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch and
R. Eelkema, Nat. Chem., 2013, 5, 433.
20 (a) Y. Yang, X. Su, C. N. Carroll and I. Aprahamian, Chem. Sci.,
2012, 3, 610; (b) X. Su, M. D. Liptak and I. Aprahamian, Chem.
Commun., 2013, 49, 4160;
55 21 F. M. Menger and K. L. Caran, J. Am. Chem. Soc., 2000, 122, 11679.
22 T. H. Tsang and D. A. Gubler, Tetrahedron Lett., 2012, 53, 4243.
4
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]