Page 5 of 7
Journal of the American Chemical Society
lective trifluoromethylation of ketones, see: (e) Yang, X.; Wu, T.;
Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826–870. For
asymmetric synthesis of αꢀCF3ꢀsubstituted αꢀhydroxy carboxylic acid
by 1,2ꢀmigration of CF3 group, see: (f) Wang, P.; Feng, L. W.; Wang,
L.; Li, J. F.; Liao, S.; Tang, Y. J. Am. Chem. Soc. 2015, 137, 4626–
4629.
(4) Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.;
Hansen, K. B.; Gould, A. E.; Furrow, M. E.; Jacobsen, E. N. J. Am.
Chem. Soc. 2002, 124, 1307–1315.
(5) (a) Yamauchi, Y.; Katagiri, T.; Uneyama, K. Org. Lett. 2002,
4, 173–176; For a recent review on oxiranyl anions, see: (b) Capriati,
V.; Florio, S.; Luisi, R. Chem. Rev. 2008, 108, 1918–1942.
(6) Yamauchi, Y.; Kawate, T.; Katagiri, T.; Uneyama, K. Tetrahe-
dron 2003, 59, 9839–9847.
(7) For a recent review on Negishi coupling, see: Haas, D.; Hamꢀ
mann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016, 6, 1540–
1552.
(8) For examples of Negishi coupling of tertiary alkylzinc with arꢀ
yl halides, see (a) Samann, C.; Dhayalan, V.; Schreiner, P. R.;
Knochel, P., Org. Lett. 2014, 16, 2418–2421; (b) Greszler, S. N.,
Halvorsen, G. T.; Voight, E. A. Org. Lett., 2017, 19, 2490–2493 and
references therein.
(9) For reviews on biaryldialkylphosphine ligands in Pdꢀcatalyzed
crossꢀcoupling reactions, see: (a) Surry, D. S.; Buchwald, S. L. An-
gew. Chem. Int. Ed. 2008, 47, 6338–6361; (b) Martin, R.; Buchwald,
S. L. Acc. Chem. Res. 2008, 41, 1461–1473; for biaryldialꢀ
kylphosphine ligands in Pdꢀcatalyzed Negishi coupling reactions, see:
(c) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126,
13028–13032; (d) Han, C.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 7532–7533; (e) Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L.,
Angew. Chem. Int. Ed. 2013, 52, 615–619.
(10) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci.,
2013, 4, 916–920
(11) See supporting information for a list of palladacycle precataꢀ
lysts examined.
(12) Yang, Y.; Niedermann, K.; Han, C.; Buchwald, S. L. Org.
Lett. 2014, 16, 4638–4641.
(13) Achonduh, G. T.; Hadei, N.; Valente, C.; Avola, S.; O'Brien,
C. J.; Organ, M. G. Chem. Commun. 2010, 46, 4109–4111.
(14) Two distinct peaks were observed in 19F NMR when racemic
TFPO was used, indicating the formation of two diastereomers of
dialkylzincate. Only one peak was observed when enantiopure TFPO
was used. See SI for the spectra.
(15) The αꢀCF3 oxiranyl zincate I could not be effectively
quenched by water.
(16) For the first report on this class of precatalyst, see: Bruno, N.
C.; Niljianskul, N.; Buchwald, S. L., J. Org. Chem. 2014, 79, 4161–
4166.
(17) (a) Wirth, T. Microreactors in organic synthesis and cataly-
sis. Wiley–VCH: Weinheim, 2008; (b) Noel, T.; Buchwald, S. L.,
Chem Soc Rev 2011, 40, 5010–5029; (c) Wegner, J.; Ceylan, S.;
Kirschning, A. Adv. Synth. Catal. 2012, 354, 17–57; (d) Hessel, V.;
Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q. Chemsuschem 2013,
6, 746–789; (e) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc.
Rev. 2013, 42, 8849–8869; (f) Ley, S. V.; Fitzpatrick, D. E.; Ingham,
R. J.; Myers, R. M. Angew. Chem. Int. Ed. 2015, 54, 3449–3464; (g)
Gutmann, B.; Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2015,
54, 6688–6728; (h) Ley, S. V.; Fitzpatrick, D. E.; Myers, R. M.; Batꢀ
tilocchio, C.; Ingham, R. J. Angew. Chem. Int. Ed. 2015, 54, 10122–
10136; (i) Kobayashi, S. Chem-Asian J. 2016, 11, 425–436.
(18) Nagaki, A.; Takizawa, E.; Yoshida, J. J. Am. Chem. Soc.
2009, 131, 1654–1655.
(19) Roesner, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55,
10463–10467.
(20) (a) Becker, M. R.; Knochel, P. Org. Lett. 2016, 18, 1462–
1465; (b) Becker, M. R.; Ganiek, M. A.; Knochel, P. Chem. Sci. 2015,
6, 6649–6653; (c) Becker, M. R.; Knochel, P. Angew. Chem. Int. Ed.
2015, 54, 12501–12505.
1
2
3
4
5
6
7
8
Conclusion
In summary, we have developed an efficient Pdꢀcatalyzed
arylation of TFPO by using a highꢀorder dialkylzincate and a
precatalyst that is effectively activated by the weakly basic
zincate. A continuousꢀflow to batch system has also been deꢀ
veloped. This threeꢀstep process allows for the generation of
αꢀCF3 oxiranyl zincate at much higher temperature compared
to the batch conditions. This method demonstrates excellent
compatibility with functional groups and reliably provides 2ꢀ
arylꢀ2ꢀtrifluoromethyloxiranes in exceptionally high enantioꢀ
meric excess. With the rich chemistry of epoxides, this process
constitutes a general approach to various CF3ꢀsubstituted terꢀ
tiary alcohols and related molecules.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information.
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures and characterization data for all comꢀ
pounds (PDF)
Crystallographic data for 4g (CIF)
AUTHOR INFORMATION
Corresponding Author
* sbuchwal@mit.edu
Notes
The authors declare the following competing financial interest(s):
MIT has or has filed patents on ligands that are described in the
paper from which SLB and former/current coworkers receive
royalty payments.
ACKNOWLEDGMENT
We acknowledge Novartis International AG for supporting this
work. We thank the National Science Foundation (CHEꢀ0946721)
for funding the Xꢀray facility at MIT. We thank Dr. Peter Mueller
for Xꢀray crystallographic. We thank Dr. Yiming Wang, Dr.
Nicholas White, and Dr. Christine Nguyen for assistance with the
preparation of this manuscript. We are grateful to Drs. Gerhard
Penn and Benjamin Martin (Novartis) for helpful comments. We
thank Sigma Aldrich for a gift of CPhos.
REFERENCES
(1) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881ꢀ
1886; (b) Ojima, I., Fluorine in medicinal chemistry and chemical
biology. WileyꢀBlackwell: Chichester, U.K., 2009; (c) Kirsch, P.
Modern fluoroorganic chemistry : synthesis, reactivity, applications.
WileyꢀVCH, Verlag GmbH & Co. KGaA: Weinheim, Germany,
2013.
(2) Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2011,
111, 455–529.
(3) For recent examples of enantioselective nucleophilic addition
to trifluoromethylketones, see: (a) Bandini, M.; Sinisi, R.; Umani–
Ronchi, A. Chem. Comm. 2008, 4360–4362; (b) Duangdee, N.;
Harnying, W.; Rulli, G.; Neudorfl, J. M.; Groger, H.; Berkessel, A. J.
Am. Chem. Soc. 2012, 134, 11196–11205; (c) Lee, K.; Silverio, D. L.;
Torker, S.; Robbins, D. W.; Haeffner, F.; van der Mei, F. W.; Hovꢀ
eyda, A. H. Nature Chem. 2016, 8, 768–777; (d) Zheng, Y.; Tan, Y.;
Harms, K.; Marsch, M.; Riedel, R.; Zhang, L.; Meggers, E. J. Am.
Chem. Soc. 2017, 139, 4322–4325. For a recent review on enantioseꢀ
(21) Bennani, Y. L.; Vanhessche, K. P. M.; Sharpless, K. B. Tet-
rahedron: Asymm. 1994, 5, 1473–1476.
ACS Paragon Plus Environment