Paper
Journal of Materials Chemistry C
methanol and 0.1% TFA in deionized water. A white solid
compound was obtained (yield 29.7%).
Notes and references
1H NMR (DMSO-d6, 300 MHz) d (ppm): 10.57 (s, 1N–H), 8.58
(d, J ¼ 6 Hz, 1H), 8.54 (d, J ¼ 9 Hz, 1H), 8.42 (d, J ¼ 9 Hz, 1H), 7.97
(t, J ¼ 7.5 Hz, 1H), 7.82 (d, J ¼ 9 Hz, 1H), 7.79 (s, 4–NH–), 4.83 (t,
1 (a) C. C. Hsieh, C. M. Jiang and P. T. Chou, Acc. Chem. Res.,
2010, 43, 1364–1374; (b) T. Y. Lin, K. C. Tang, S. H. Yang,
J. Y. Shen, Y. M. Cheng, H. A. Pan, Y. Chi and P. T. Chou,
J. Phys. Chem. A, 2012, 116, 4438–4444; (c) J. Wu, W. Liu,
J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev., 2011, 40,
3483–3495.
2 (a) K. Y. Chen, C. C. Hsieh, Y. M. Cheng, C. H. Lai and
P. T. Chou, Chem. Commun., 2006, 13, 4395–4397; (b)
M. D. McGehee and A. J. Heeger, Adv. Mater., 2000, 12,
1655–1668; (c) P. T. Chou, M. L. Martinez and
J. H. Clements, J. Phys. Chem., 1993, 97, 2618–2622.
3 (a) D. Kuila, G. Kvakovszky, M. A. Murphy, R. Vicari,M. H. Rood,
K. A. Fritch, J. R. Fritch, S. T. Wellinghoff and S. F. Timmons,
Chem. Mater., 1999, 11, 109–116; (b) Y. P. Tsentalovich,
O. A. Snytnikova, M. D. E. Forbes, E. I. Chernyak and
S. V. Morozov, Exp. Eye Res., 2006, 83, 1439–1445.
4 (a) K. C. Tang, M. J. Chang, T. Y. Lin, H. A. Pan, T. C. Fang,
K. Y. Chen, W. Y. Hung, Y. H. Hsu and P. T. Chou, J. Am.
Chem. Soc., 2011, 133, 17738–17745; (b) S. Park, J. E. Kwon,
S. H. Kim, J. Seo, K. Chung, S. Y. Park, D. J. Jang,
B. M. Medina, J. Gierschner and S. Y. Park, J. Am. Chem.
Soc., 2009, 131, 14043–14049; (c) J. E. Kwon and S. Y. Park,
Adv. Mater., 2011, 23, 3615–3642.
J ¼ 12 Hz, 1–OH), 4.18 (t, J ¼ 12 Hz, 2H), 3.63 (t, J ¼ 6 Hz, 2H); 13
C
NMR (DMSO-d6, 75 MHz) d (ppm): 163.4, 163.0, 156.6, 137.6,
131.4, 131.2, 129.0, 128.6, 127.7, 127.4, 124.8, 122.6, 120.8, 57.7,
1
41.8. H NMR (DMSO-d6 + NaOH solid, 300 MHz) d (ppm): 8.55
(d, J ¼ 6 Hz, 1H), 8.45 (d, J ¼ 6 Hz, 1H), 8.33 (d, J ¼ 9 Hz, 1H), 7.72
(t, J ¼ 7.5 Hz, 2H), 7.31 (d, J ¼ 6 Hz, 1H), 6.56 (s, 4–NH–), 4.80 (s,1–
OH), 4.15 (t, J ¼ 6 Hz, 2H), 3.59 (t, J ¼ 6 Hz, 2H); 13C NMR (DMSO-
d6 + NaOH solid, 75 MHz) d (ppm): 163.8, 163.1, 156.1, 132.5,
130.7, 130.6, 129.3, 127.4, 125.2, 121.9, 118.6, 113.3, 57.9, 41.5;
MS (ESI): m/z 299.0 (M + H)+; HRMS (ESI): m/z calcd for
C15H15N4O3 (M + H)+ 299.11387, found, 299.11356.
Synthesis of N-butyl-4-guanidino-1,8-naphthalimide (TNG)
2.5 g (9.03 mmol) 4-bromine-1,8-naphthalic anhydride was
dissolved in 150 mL ethanol, and heated to reux. Then 610 mL
of butylamine (8.6 mmol) was added to the mixture slowly aer
the temperature was reduced to 50 ꢃC. The resulting mixture
was heated to reux with stirring for 1 h. The reaction was over
when the solution became clear. Aer the solution was cooled to
room temperature, water was added to the solution and then a
precipitate emerged. A white solid was obtained by vacuum
ltration, and then washed with water and ethanol three times
each, and nally dried by vacuum. N-Butyl-4-bromine-1,8-
naphthalimide was obtained (yield 85.3%). Then 100 mg
(0.302 mmol) N-butyl-4-bromine-1,8-naphthalimide, 78 mg
(0.80 mmol) guanidinium hydrochloride and 44 mg (1.1 mmol)
NaOH were dissolved in DMSO (4 mL). The resulting mixture
was heated to reux with stirring for 1 h. The resulting mixture
was heated to 80 ꢃC for 12 h. Aer cooling to room temperature,
the solution was added to water and precipitation appeared in
the solution. A brown solid was obtained by vacuum ltration.
The residue was puried by column chromatography using
silica-gel (100–200 mesh) and 5% methanol in dichloromethane
as eluent to give a yellow solid compound, then further puried
by HPLC with chromatographic grade methanol and 0.1% TFA
in deionized water. A white solid compound was obtained
(yield 33.5%).
5 E. S. Mansueto and C. A. Wight, J. Am. Chem. Soc., 1989, 111,
1900–1901.
6 M. Kamioka, Y. Ishikawa, H. Kaetsu, S. Isomura and S. Arai,
J. Phys. Chem., 1986, 90, 5727–5730.
7 (a) N. Karton-Lifshin, I. Presiado, Y. Erez, R. Gepshtein,
D. Shabat and D. Huppert, J. Phys. Chem. A, 2012, 116, 85–
92; (b) N. Alarcos Carmona, B. Cohen, J. Angel Organero
and A. Douhal, J. Photochem. Photobiol., A, 2012, 234, 3–11.
8 (a) Y. Erez and D. Huppert, J. Phys. Chem. A, 2010, 114, 8075–
8082; (b) Y. Erez, I. Presiado, R. Gepshtein and D. Huppert, J.
Phys. Chem. A, 2011, 115, 1617–1626; (c) I. Presiado, Y. Erez
and D. Huppert, J. Phys. Chem. A, 2010, 114, 13337–13346;
(d) H. Hosoi, H. Mizuno, A. Miyawaki and T. Tahara, J.
Phys. Chem. B, 2006, 110, 22853–22860; (e) D. Stoner-Ma,
A. A. Jaye, P. Matousek, M. Towrie, S. R. Meech and
P. J. Tonge, J. Am. Chem. Soc., 2005, 127, 2864–2865; (f)
N. Agmon, Biophys.J., 2005, 88, 2452–2461.
9 B. M. Uzhinov and M. N. Khimich, Russ. Chem. Rev., 2011, 80,
553–577.
10 (a) R. Daengngern, N. Kungwan, P. Wolschann,
A. J. A. Aquino, H. Lischka and M. Barbatti, J. Phys. Chem.
A, 2011, 115, 14129–14136; (b) G. A. Brucker and
D. F. Kelley, J. Chem. Phys., 1989, 90, 5243–5251.
1H NMR (DMSO-d6, 300 MHz) d (ppm): 8.59–8.52 (m, 2H),
8.42 (d, J ¼ 6.0 Hz, 1H), 7.97 (t, J ¼ 9.0 Hz, 1H), 7.84 (s, 4–NH–),
7.82 (d, J ¼ 9.0 Hz, 1H), 3.39 (t, J ¼ 6.0 Hz, 2H), 1.67–1.60 (m,
2H), 1.39–1.31 (m, 2H), 0.93 (t, J ¼ 7.5 Hz, 3H); 13C NMR (DMSO-
d6, 75 MHz) d (ppm): 163.2, 162.8, 156.7, 137.7, 131.4, 131.28,
129.0, 128.5, 127.28, 127.4, 124.8, 122.4.5, 120.7, 29.6, 19.7, 13.7;
MS (ESI): m/z 311.2 (M + H)+; HRMS (ESI): m/z calcd for
11 (a) L. M. Tolbert and K. M. Solntsev, Acc. Chem. Res., 2002,
35, 19–27; (b) M. Lawrence, C. J. Marzzacco, C. Morton,
C. Schwab and A. M. Halpern, J. Phys. Chem., 1991, 95,
10294–10299.
C
15H15N4O3 (M + H)+ 311.15025, found, 311.1504.
12 I. Presiado, Y. Erez and D. Huppert, J. Phys. Chem. A, 2010,
114, 9471–9479.
Acknowledgements
13 E. A. Gould, A. V. Popov, L. M. Tolbert, I. Presiado, Y. Erez,
D. Huppert and K. M. Solntsev, Phys. Chem. Chem. Phys.,
2012, 14, 8964–8973.
We gratefully acknowledge the nancial support from the grant
973 Program (2011CB935800 and 2013CB33700) and NSF of
China (21075124 and 21275149).
This journal is ª The Royal Society of Chemistry 2013
J. Mater. Chem. C, 2013, 1, 4427–4436 | 4435