4 S. W. Kim and K. D. Kim, Method for Preparing Metal Compound
Nanoparticles, EP 2206681, 2010.
5 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710.
6 S. Cabrera, J. El Haskouri, J. Alamo, A. Beltran, D. Beltran,
S. Mendioroz, M. D. Marcos and P. Amoros, Adv. Mater., 1999,
11, 379.
7 H. L. Tidahy, S. Siffert, J.-F. Lamonier, E. A. Zhilinskaya,
A. Aboukais, Z.-Y. Yuan, A. Vantomme, B.-L. Su, X. Canet,
G. De Weireld, M. Frere, T. B. N’Guyen, J.-M. Giraudon and
G. Leclercq, Appl. Catal., A, 2006, 310, 61.
8 L. M. Bronstein, D. M. Chernyshov, R. Karlinsey, J. W. Zwanziger,
V. G. Matveeva, E. M. Sulman, G. N. Demidenko, H.-P. Hentze and
M. Antonietti, Chem. Mater., 2003, 15, 2623.
9 J. H. Schattka, D. G. Shchukin, J. Jia, M. Antonietti and
R. A. Caruso, Chem. Mater., 2002, 14, 5103.
10 C. Vix-Guterl, S. Boulard, J. Parmentier, J. Werckmann and
J. Patarin, Chem. Lett., 2002, 1062.
11 T.-W. Kim, I.-S. Park and R. Ryoo, Angew. Chem., Int. Ed., 2003, 42,
4375.
12 V. A. Davankov and M. P. Tsyurupa, React. Polym., 1990, 13, 27.
13 M. P. Tsyurupa and V. A. Davankov, J. Polym. Sci., Polym. Chem.
Ed., 1980, 18, 1399.
14 J. R. C. Salgado, J. J. Quintana, L. Calvillo, M. J. Lazaro,
P. L. Cabot, I. Esparbe and E. Pastor, Phys. Chem. Chem. Phys.,
2008, 10, 6796.
15 F. Su, L. Lv, F. Y. Lee, T. Liu, A. I. Cooper and X. S. Zhao, J. Am.
Chem. Soc., 2007, 129, 14213.
16 A. B. Fuertes and P. Tartaj, Small, 2007, 3, 275.
17 A. Hayashi, H. Notsu, K. Kimijima, J. Miyamoto and I. Yagi,
Electrochim. Acta, 2008, 53, 6117.
18 L. D. Rampino and F. F. Nord, J. Am. Chem. Soc., 1941, 63, 2745.
19 L. Bronstein, G. Goerigk, M. Kostylev, M. Pink, I. A. Khotina,
P. M. Valetsky, V. G. Matveeva, E. M. Sulman, M. G. Sulman,
A. V. Bykov, N. V. Lakina and R. J. Spontak, J. Phys. Chem. B,
2004, 108, 18234.
high selectivity is normally determined by the optimal sorption–
desorption equilibrium of the reacting and target molecules at
the catalytic center. Apparently for all Pd compounds studied in
this paper, this condition is realized. At the same time, the
activity (TOF, Table 3) of the catalysts is quite different and
clearly dependent on the precursor NPs.
Considering that D-glucose is a hydrophilic substrate, one
might suggest that the best activity should be achieved with more
hydrophilic NPs such as those formed by (CH3CN)2PdCl2 and
(PhCN)2PdCl2, while the worst activity should be found for
(StyPdCl2)2. Indeed the TOF of HPS–Pd4 containing the most
hydrophobic (StyPdCl2)2 complex is low, but even lower TOF
was observed with HPS–Pd1 containing the most hydrophilic
(CH3CN)2PdCl2 NPs. The highest catalytic activity, on the other
hand, was achieved for HPS–Pd3 containing the smallest NPs
with intermediate hydrophobicity. Apparently, for the smallest
NPs the maximum amount of catalytic centers is available for D-
glucose molecules. This allows us to conclude that the NP size
plays the most crucial role in catalyst activity. On the other hand,
the NP size is dependent on the hydrophobicity–hydrophilicity
balance of the Pd complex. In addition, for the (Sty)(CH3CN)
PdCl2 case, hydrophilic D-glucose molecules may penetrate inside
the (Sty)(CH3CN)PdCl2 micelles allowing good compatibility of
the substrate with Pd compound NPs. It is noteworthy that this
TOF is also moderately higher than that of the conventional
PdCl2 on alumina catalyst (Table 3).
4. Conclusions
20 S. N. Sidorov, I. V. Volkov, V. A. Davankov, M. P. Tsyurupa,
P. M. Valetsky, L. M. Bronstein, R. Karlinsey, J. W. Zwanziger,
V. G. Matveeva, E. M. Sulman, N. V. Lakina, E. A. Wilder and
R. J. Spontak, J. Am. Chem. Soc., 2001, 123, 10502.
21 E. Sulman, V. Doluda, S. Dzwigaj, E. Marceau, L. Kustov,
O. Tkachenko, A. Bykov, V. Matveeva, M. Sulman and N. Lakina,
J. Mol. Catal. A: Chem., 2007, 278, 112.
22 A. Bykov, V. Matveeva, M. Sulman, P. Valetskiy, O. Tkachenko,
L. Kustov, L. Bronstein and E. Sulman, Catal. Today, 2009, 140, 64.
23 B. Roldan Cuenya, S.-H. Baeck, T. F. Jaramillo and
E. W. McFarland, J. Am. Chem. Soc., 2003, 125, 12928.
24 J. P. Wilcoxon and B. L. Abrams, Chem. Soc. Rev., 2006, 35, 1162.
25 P. Nowakowski, J.-P. Dallas, S. Villain, A. Kopia and J.-R. Gavarri,
J. Solid State Chem., 2008, 181, 1005.
We demonstrated that the nature of the ligands in the Pd(II)
complexes and their packing in HPS determine formation of Pd
compound NPs including their size and location. The NP size for
the Pd complexes studied decreases with the increase of hydro-
phobicity in the sequence (CH3CN)2PdCl2 > (PhCN)2PdCl2 >
(Sty)(CH3CN)PdCl2. In the case of (StyPdCl2)2 with the highest
hydrophobicity, the compatibility of the complex and HPS is so
high that the former spreads along the HPS pore walls, forming
no NPs. Testing of the catalysts in D-glucose oxidation revealed
that the highest catalytic activity is achieved for (Sty)(CH3CN)
PdCl2, forming smallest NPs and allowing an optimal hydro-
phobicity–hydrophilicity balance with HPS.
26 D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem., Int. Ed., 2005, 44,
7852.
27 M. V. Seregina, L. M. Bronstein, O. A. Platonova,
D. M. Chernyshov, P. M. Valetsky, J. Hartmann, E. Wenz and
M. Antonietti, Chem. Mater., 1997, 9, 923.
28 A. B. R. Mayer and J. E. Mark, Colloid Polym. Sci., 1997, 275, 333.
29 A. B. R. Mayer, J. E. Mark and R. E. Morris, Polym. J., 1998, 30, 197.
30 Z. Lu, G. Liu, H. Phillips, J. M. Hill, J. Chang and R. A. Kydd, Nano
Lett., 2001, 1, 683.
31 S.-K. Oh, Y. Niu and R. M. Crooks, Langmuir, 2005, 21, 10209.
32 O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez and
R. M. Crooks, J. Am. Chem. Soc., 2006, 128, 4510.
33 I. V. Delidovich, O. P. Taran, L. G. Matvienko, A. N. Simonov,
I. L. Simakova, A. N. Bobrovskaya and V. N. Parmon, Catal.
Lett., 2010, 140, 14.
34 M. Rosu and A. Schumpe, Chem. Eng. Sci., 2010, 65, 220.
35 A. K. Singh, J. Srivastava, S. Rahmani and V. Singh, Carbohydr. Res.,
2006, 341, 397.
Acknowledgements
This work has been supported in part by the IU Faculty
Research Support Program. The authors also thank the Federal
Program ‘‘Scientists and Educators of Innovative Russia’’ 2009–
20013, contract #14.740.11.0380, the Ministry of Education and
Science of the Russian Federation (grants 16.552.11.7031 and
02.740.11.0864), and funding from the European Community’s
Seventh Framework Programme [FP7/2007–2013] under grant
agreement no. CP-IP 24095.
36 S. Srivastava and P. Singh, Oxid. Commun., 2008, 31, 853.
37 A. K. Singh, T. Gupta, V. K. Singh, S. Rahmani, D. Kesarwani and
B. Singh, Oxid. Commun., 2000, 23, 609.
38 K. B. Kokoh, J. M. Leger, B. Beden and C. Lamy, Electrochim. Acta,
1992, 37, 1333.
Notes and references
1 K. Moller and T. Bein, Chem. Mater., 1998, 10, 2950.
2 L. M. Bronstein, Top. Curr. Chem., 2003, 226, 55.
3 K. Wikander, A. B. Hungria, P. A. Midgley, A. E. C. Palmqvist,
K. Holmberg and J. M. Thomas, J. Colloid Interface Sci., 2007,
305, 204.
39 V. N. Bukin and I. N. Garkina, Method of Producing Calcium
Pangamate, US 3907869, 1975.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 6441–6448 | 6447