ACS Catalysis
. CONCLUSIONS
Research Article
(
3) Hustede, H.; Haberstroh, H.-J.; Schinzig, E. In Ullmann’s
4
Encyclopedia of Industrial Chemistry, 6th ed.; Wiley-VCH: Weinheim,
000; Vol. A 12, pp 449−456.
4) Thielecke, N.; Aytemir, M.; Pru
15−120.
5) Baatz, C.; Pru
This study showed that the Au/CMK-3 catalyst had an
advantage in the aerobic oxidation of glucose under base-free
conditions. Increasing the temperature and oxygen pressure
could promote the reaction rate and conversion, and the
improving effect was more obvious when the oxygen pressure
was increased at a relatively high temperature. At 383 K and 0.3
MPa, the conversion could exceed 92% in 2 h. Furthermore, the
amount of the byproduct fructose was affected by the
generation of hydrogen peroxide, which was produced
simultaneously in the main reaction. Thus, for a catalyst
under a fixed reaction condition, the selectivity reduced
gradually along with time, but for the different catalysts that
reached the same conversion, the one that cost less time would
have a better selectivity toward gluconic acid.
2
(
1
(
̈
sse, U. Catal. Today 2007, 121,
̈
ße, U. J. Catal. 2007, 249, 34−40.
(6) Lichtenthaler, F. W. In Biorefineries Industrial Processes and
Products, 1st ed.; Kamm, B.; Gruber, P. R.; Kamm, M., Eds.; Wiley-
VCH: Weinheim, 2008; Vol. 2, pp 2−5.
(
(
(
7) Kobayashi, H.; Fukuoka, A. Green Chem. 2013, 15, 1740−1763.
8) Dirkx, J. M. H.; van der Baan, H. S. J. Catal. 1981, 67, 1−13.
9) Besson, M.; Lahmer, F.; Gallezot, P.; Fuertes, P.; Fleche, G. J.
Catal. 1995, 152, 116−121.
(
Chem. 2002, 180, 141−159.
(
(
10) Wenkin, M.; Ruiz, P.; Delmon, B.; Devillers, M. J. Mol. Catal. A,
11) Gallezot, P. Catal. Today 1997, 37, 405−418.
12) Pina, C. D.; Falletta, E.; Rossi, M. Chem. Soc. Rev. 2012, 41,
The stability of the Au/CMK-3 catalyst was studied. The
conversion dropped gradually from 92% to ∼70% through the
four subsequent runs. Two different kinds of regeneration
method, including NaOH treatment and calcination, were
compared and discussed. On the basis of the results, the used
catalyst treated with 50 mL of 0.1 mol/L NaOH for 30 min at
3
50−369.
(13) Kusema, B. T.; Murzin, D. Y. Catal. Sci. Technol. 2013, 3, 297−
307.
(14) Biella, S.; Prati, L.; Rossi, M. J. Catal. 2002, 206, 242−247.
(
15) Hermans, S.; Devillers, M. Appl. Catal., A 2002, 235, 253−264.
16) Comotti, M.; Pina, C. D.; Falletta, E.; Rossi, M. Adv. Synth.
(
Catal. 2006, 348, 313−316.
17) Zhang, H. J.; Okuni, J.; Toshima, N. J. Colloid Interface Sci. 2011,
54, 131−138.
18) Mirescu, A.; Berndt, H.; Martin, A.; Pru
007, 317, 204−209.
19) Thielecke, N.; Vorlop, K.-D.; Pru
266−269.
(20) Wang, Y. R.; Van de Vyver, S.; Sharma, K. K.; Roman
Y. Green Chem. 2014, 16, 719−726.
3
63 K showed the best performance with 87% conversion. The
(
3
(
2
characterizations indicated that after the recycling experiments,
abundant carboxylic acids were adsorbed on the surface of the
catalyst, which was the predominant factor that caused
deactivation. Both NaOH treatment and calcination could
effectively remove the adsorbates, and atmospheric calcination
was more useful in this aspect. However, given the appearance
of large particles during the calcination procedure, the
consequence was no match for the NaOH treatment method.
Therefore, one can conclude that the NaOH treatment is a very
simple but useful way to regenerate used catalysts that suffered
from adsorbate deactivation in glucose oxidation.
̈
ße, U. Appl. Catal., A
(
̈
ße, U. Catal. Today 2007, 122,
́
-Leshkov,
(21) Miedziak, P. J.; Alshammari, H.; Kondrat, S. A.; Clarke, T. J.;
Davies, T. E.; Morad, M.; Morgan, D. J.; Willock, D. J.; Knight, D. W.;
Taylor, S. H.; Hutchings, G. J. Green Chem. 2014, 16, 3132−3141.
(
22) Dimitratos, N.; Villa, A.; Wang, D.; Porta, F.; Su, D.; Prati, D. J.
Catal. 2006, 244, 113−121.
(
Kreutzer, M. T.; Kooyman, P. J.; Moulijn, J. A.; Kapteijn, F. Catalysts.
2014, 4, 89−115.
(24) Wang, T.; Shou, H.; Kou, Y.; Liu, H. Green Chem. 2009, 11,
23) Skupien, E.; Berger, R. J.; Santos, V. P.; Gascon, J.; Makke, M.;
ASSOCIATED CONTENT
Supporting Information
■
*
S
5
(
2
62−568.
25) Ding, Y.; Li, X. H.; Pan, H. Y.; Wu, P. Catal. Lett. 2014, 144,
68−277.
(26) Sun, F.; Liu, J.; Chen, H. C.; Zhang, Z. X.; Qiao, W. M.; Long,
N2 adsorption−desorption isotherms, XRD patterns,
TEM images and CO -TPD profiles of some catalysts
2
as well as the recycling experiment data (PDF)
D. H.; Ling, L. C. ACS Catal. 2013, 3, 862−870.
(
(
H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548−552.
(
27) Saha, D.; Deng, S. G. Langmuir 2009, 25, 12550−12560.
28) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G.
AUTHOR INFORMATION
Corresponding Author
■
29) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.;
Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712−10712.
(30) Bi, Q.-Y.; Du, X.-L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. J.
Am. Chem. Soc. 2012, 134, 8926−8933.
Notes
(
31) Cui, H.-F.; Ye, J.-S.; Liu, X.; Zhang, W.-D.; Sheu, F.-S.
The authors declare no competing financial interest.
Nanotechnology 2006, 17, 2334−2339.
(
331−335.
32) Zhe, Y. Q.; Ma, C. A.; Zhu, Y. H. Acta Phys. Chim. Sin. 2004, 20,
ACKNOWLEDGMENTS
We acknowledge the financial supports from the MOST of
China (2011CBA00508), the NSFC (21403178 and
■
(33) Zhang, X.; Cui, Y.; Lv, Z.; Li, M.; Ma, S.; Cui, Z.; Kong, Q. Int. J.
Electrochem. Sci. 2011, 6, 6063−6073.
̈
(
(
34) Onal, Y.; Schimpf, S.; Claus, P. J. Catal. 2004, 223, 122−133.
2
1473145), the Research Fund for the Doctoral Program of
35) Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.;
Higher Education (20110121130002), and the Program for
Changjiang Scholars and Innovative Research Team in
University (IRT_14R31).
Siokou, A.; Kallitsis, I.; Galiotis, C. Carbon 2008, 46, 833−840.
36) Aviles, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.;
Vargas-Coronado, R. Carbon 2009, 47, 2970−2975.
37) Zhang, J.; Jin, Y.; Li, C. Y.; Shen, Y. N.; Han, L.; Hu, Z. X.; Di,
(
́
(
REFERENCES
■
X. W.; Liu, Z. L. Appl. Catal., B 2009, 91, 11−20.
(38) Kvande, I.; Zhu, J.; Zhao, T.-J.; Hammer, N.; Rønning, M.;
Raaen, S.; Walmsley, J. C.; Chen, D. J. Phys. Chem. C 2010, 114,
1752−1762.
(
(
1) Gallezot, P. Catal. Today 2007, 121, 76−91.
2) Ma, C. Y.; Xue, W. J.; Li, J. J.; Xing, W.; Hao, Z. P. Green Chem.
2
013, 15, 1035−1041.
2
669
ACS Catal. 2015, 5, 2659−2670