Page 5 of 6
ACS Catalysis
place favorably in aqueous media and swapping between hydrogena-
T.; Xu, L.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.; Chan, A. S. C. Angew. Chem.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
tion and dehydrogenation processes exclusively depends on the
presence or absence of dihydrogen gas. Such a simple and reversibly
operating catalytic system holds great promise for reversible hydro-
gen storage in N-heterocyclic compounds. Investigations on further
improving the catalyst performance for the reversible dehydrogena-
tion-hydrogenation reaction of quinolines as well as other liquid or-
ganic hydrogen carriers containing a larger hydrogen storage capac-
Int. Ed. 2008, 47, 8464–8467. (c) Manaeka, Y.; Suenobu, T.; Fukuzumi, S. J.
Am. Chem. Soc. 2011, 134, 367–374. (d) Wu, J.; Talwar, D.; Johnston, S.;
Yan, M.; Xiao, J. Angew. Chem. Int. Ed. 2013, 52, 6983–6987. (e) Wu, J.; Bar-
nard, J. H.; Zhang, Y.; Talwar, D.; Robertson, C. M.; Xiao, J. Chem. Commun.
2
013, 49, 7052–7054. (f) Cai, X.-F.; Huang, W.-X.; Chen, Z.-P.; Zhou, Y.-
G. Chem. Commun. 2014, 50, 9588–9590. (g) Wendlandt, A. E.; Stahl, S. S.
J. Am. Chem. Soc. 2014, 136, 11910–11913. (h) Fujita, K.; Tanaka, Y.;
Kobayashi, M.; Yamaguchi, R. J. Am. Chem. Soc. 2014, 136, 4829–4832. (i)
Adam, R.; Cabrero-Antonino, J. R.; Spannenberg, A.; Junge, K.; Jackstell, R.;
Beller, M. Angew. Chem. Int. Ed. 2017, 56, 3216–3220.
1
0
ity as one of the many requirements for efficient LOHCs are cur-
rently in progress.
(
4) (a) Yamaguchi, R.; Ikeda, C.; Takahashi, T.; Fujita, K. J. Am. Chem.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Soc. 2009, 131, 8410–8412. (b) Chakraborty, S.; Brennessel, W. W.; Jones,
W. D. J. Am. Chem. Soc. 2014, 136, 8564–8565. (c) Xu, R.; Chakraborty, S.;
Yuan, H.; Jones, W. D. ACS Cat. 2015, 5, 6350–6354.
ASSOCIATED CONTENT
Supporting Information. NMR spectra from deuteration and reaction
intermediates, time-conversion profile for dehydrogenation, NMR
spectra of products, and experimental procedures. This material is avail-
able free of charge on the ACS Publication website at DOI:
(
5) (a) Lalrempuia, R.; Müller-Bunz, H.; Albrecht, M. Angew. Chem. Int.
Ed. 2011, 50, 9969–9972. (b) Donnelly, K. F.; Lalrempuia, R.; Müller-Bunz,
H.; Clot, E.; Albrecht, M. Organometallics 2015, 34, 858−869.
(6) Bolje, A.; Hohloch, S.; Van der Meer, M.; Kosmrlj, J.; Sarkar, B. Chem.
Eur. J. 2015, 21, 6756–6764.
(7) Petronilho, A.; Woods, J. A.; Müller-Bunz, H.; Bernhard, S.; Albrecht,
M. Chem. Eur. J. 2014, 20, 15775–15784.
1
0.1021/xxxxx.
AUTHOR INFORMATION
Corresponding Author
(
8) Valencia, M.; Pereira, A.; Müller-Bunz, H.; Belderraín, T.; Pérez, P. J.;
Albrecht, M. Chem. Eur. J. 2017, 23, 8901–8911.
(9) (a) Woods, J. A.; Lalrempuia, R.; Petronilho, A.; McDaniel, N. D.;
Müller-Bunz, H.; Albrecht, M.; Bernhard, S. Energy Environ. Sci. 2014, 7,
*
E-mail: martin.albrecht@dcb.unibe.ch
ORCID
2
316–2328. (b) Lalrempuia, R.; McDaniel, N. D.; Müller-Bunz, H.; Bern-
hard, S.; Albrecht, M. Angew. Chem. Int. Ed. 2010, 49, 9765–9768.
10) (a) Preuster, P.; Papp, C.; Wasserscheid, P. Acc. Chem. Res. 2017,
0, 74–85. (b) Graetz, J.; Wolstenholme, D.; Pez, G.; Klebanoff, L.;
Angela Vivancos: 0000-0001-9375-8002
Matthias Beller: 0000-0001-5709-0965
Martin Albrecht: 0000-0001-7403-2329
(
5
McGrady, S.; Cooper, A. in Hydrogen Storage Technology (Klebanoff, L. ed.),
CRC press, 2013.
(11) Dobereiner, G. E.; Nova, A.; Schley, N. D.; Hazari, N.; Miller, S. J.;
Eisenstein, O.; Crabtree, R. H. J. Am. Chem. Soc. 2011, 133, 7547–7562.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(
12) Manas, M. G.; Sharninghausen, L. S.; Lin, E.; Crabtree, R. H. J. Or-
We acknowledge generous financial support from the European Re-
search Council (CoG 615653), from the Swiss National Science Foun-
dation (200021_162868), and from COST Action CM1205 for funding
a STSM research visit to A.V. (ECOST-STSM-CM1205-260915-
ganomet. Chem. 2015, 792, 184–189.
(13) (a) Donnelly, K. F.; Lalrempuia, R.; Müller-Bunz, H.; Albrecht, M.
Organometallics 2012, 31, 8414−8419. (b) See Supporting Information for
the synthesis of complex 3 and ref. 9b for related complexes. (c) Vivancos,
A.; Albrecht, M. Organometallics 2017, 36, 1580−1590.
(14) Levin, E.; Ivry, E.; Diesendruck, C. E.; Lemcoff, N. G. Chem. Rev.
2015, 115, 4607−4692.
0
62826). We thank K. F. Donnelly for the synthesis of complex 3.
(
15) The reaction with catalyst 1b has not been tried in H O, as solvolysis
2
REFERENCES
of complex 1a in water is fast and produces in fact 1b. For reactions in aque-
ous phase, it therefore is irrelevant whether 1a or 1b is the starting material
as both compounds produce the di-cationic aqua compound 1b.
(
1) (a) Crabtree, R. H. Energy Environ. Sci. 2008, 1, 134–138. (b) Eberle,
U.; Felderhoff, M.; Schüth, F. Angew. Chem. Int. Ed. 2009, 48, 6608–6630;
Angew. Chem. 2009, 121, 6732–6757. (c) Teichmann, D.; Arlt, W.; Wasser-
scheid, P.; Freymann, R. Energy Environ. Sci. 2011, 4, 2767–2773.
(
16) Solvolysis of this complex has been established, see: Petronilho, A.;
Llobet, A.; Albrecht, M. Inorg. Chem. 2014, 53, 12896–12901.
(
2) (a) Mikami, K.; Ebata, K.; Mistudome, T.; Mizugaki, T.; Jitsukawa,
(17) When the reaction is performed under the same conditions without
K.; Kaneda, K. Heterocycles 2011, 82, 1371–1377. (b) Ren, D.; He, L.; Yu,
L.; Ding, R.-S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. J. Am. Chem. Soc.
H
2
gas no conversion is observed, discharging the possibility of being trans-
ferring hydrogen from the solvent.
18) (a) Cooper, A. C.; Eisenstein, O.; Gaulton, K. G. New J. Chem. 1998,
07−309. (b) Maseras, F.; Lledos, A.; Clot, E.; Eisenstein, O. Chem. Rev.
000, 100, 601–636.
19) (a) Butschke, B.; Schwarz, H. Chem. Sci. 2012, 3, 308−326. (b)
2
012, 134, 17592–17598. (c) Dell’Anna, M. M.; Capodiferro, V. F.; Mali,
M.; Manno, D.; Cotugno, P.; Monopoli, A.; Mastrorilli, P. Appl. Catal. A,
014, 481, 89–95. (d) Zhu, D.; Jiang, H.; Zhang, L.; Zheng, X.; Fu, H.; Yuan,
(
3
2
2
M.; Chen, H.; Li, R. ChemCatChem 2014, 6, 2954–2960. (e) Zhang, Y.; Zhu,
J.; Xia, Y.-T.; Sun, X.-T.; Wu, L. Adv. Synth. Catal. 2016, 358, 3039–3045.
(
Zucca, A.; Maidich, L.; Canu, L.; Petretto, G. L.; Stoccoro, S.; Cinellu, M. A.;
Clarkson, G. J.; Rourke, J. P. Chem. Eur. J. 2014, 20, 5501−5510.
(20) 4-quinolines are known as a challenging substrate: Chen, F.; Surkus,
A.-E.; He, L.; Pohl, M.-M.; Radnik, J.; Topf, C.; Junge, K.; Beller, M. J. Am.
Chem. Soc. 2015, 137, 11718−11724.
(
2
f) Tang, M.; Deng, J.; Li, M.; Li, X.; Li, H.; Chen, Z.; Wang, Y. Green Chem.
016, 18, 6082–6090. (g) Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus,
A.-E.; Junge, K.; Topf, C.; Beller, M. J. Am. Chem. Soc. 2015, 137, 10652–
1
2
0658. (h) Sun, X.-T.; Zhu, Y.; Xia, Y.-T.; Wu, L. ChemCatChem 2017, 9,
463–2466.
(
3) (a) Wang, W. B.; Lu, S. M.; Yang, P. Y.; Han, X. W.; Zhou, Y. G. J. Am.
Chem. Soc. 2003, 125, 10536–10537. (b) Zhou, H.; Li, Z.; Wang, Z.; Wang,
5
ACS Paragon Plus Environment