Journal of the American Chemical Society
Page 4 of 5
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
For help with synchrotron SAXS and neutron experiments we
thank Prof. N. Terrill at I22, Diamond, and Drs. A. Perkins and B.
Deme at D16, ILL. Financial support is acknowledged from NSF-
EPSRC
(
(
project
EP/D058066), Leverhulme Trust (RPG-2012-804), NSFC China
21274132).
“RENEW”
(EP/K034308),
EPSRC
REFERENCES
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Figure 3. Schematic model of a layer of the 12-12-12Li + C19D40
0/20 blend in the (a) Colh and (b) superlattice phase (pink:
minidendrons; green: n-alkane).
8
1 (a) Sun, H.-J.; Zhang, S.; Percec, V. Chem. Soc. Rev. 2015, 44, 3900;
(b) Donnio, B.; Buathong, S.; Bury, I.; Guillon, D. Chem. Soc. Rev. 2007,
36, 1495–1513; (c) Tschierske, C. Angew. Chem. Int. Ed. 2013, 52, 8828-
8878. (d) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed.
2006, 45, 38–68.
The remaining question to answer is why the columns of the Li
salts do not show thermal contraction like the other alkali metal
2
salts, exemplified here by 12-12-Rb and 16-16-16Rb (Figure 1c).
(a) Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur.
We propose that the columns of the Li salts resist contraction
because with the number () of dendrons as small as three, the
loss of one dendron would create unoccupied space that the ex-
panding tails of the remaining two dendrons could not fill at any
temperature within the range of the Col phase. Thus, without
h
added alkane, lateral contraction could not occur for Li salts. By
J. 2001, 7, 2245-2253; (b) An, Z.; Yu, J.; Domercq, B.; Jones, S. C.; Bar-
low, S.; Kippelen, B.; Marder, S. R. J. Mater. Chem. 2009, 19, 6688-6698;
(c) Percec, V.; Peterca, M.; Tadjiev, T.; Zeng, X.; Ungar, G.; Leowana-
wat, P.; Aqad, E.; Imam, M. R.; Rosen, B. M.; Akbey, U.; Graf, R.;
Sekharan, S.; Sebastiani, D.; Spiess, H. W.; Heiney, P. A.; Hudson, S. D.
J. Am. Chem. Soc. 2011, 133, 12197-12219.
3
(a) Li, W. S.; Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.; Ta-
contrast, in the salts of other alkali metals is larger than 3 (in
gawa, S.; Masunaga, H.; Sasaki, S.; Takata, M.; Aida, T. J. Am. Chem.
Soc. 2008, 130, 8886; (b) Nierengarten, J.-F.; Oswald, L.; Eckert, J.-F.;
1
2-12-12Rb and 16-16-16Rb is close to 4), hence the loss of
one molecule leaves a proportionally smaller gap that the remain-
ing dendrons could fill. Moreover, the Col phase in the salts with
Nicoud, J.-F.; Armaroli, N. Tetraheron Lett. 1999, 40, 5681.
4
(a) Ungar, G.; Batty, S. V.; Percec, V.; Heck, J.; Johansson, G. Adv.
h
Mater. Opt. Electro. 1994, 4, 303–313; (b) Ichikawa, T.; Yoshio, M.;
Hamasaki, A.; Mukai, T.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2007,
larger cations is of the “disordered” type, i.e. a true liquid crystal
and not a “soft crystal” with a degree of 3-d order. As can be seen
in the fibre pattern of 12-12-12Rb in Figure S8, there is no sharp
Bragg diffraction on or near the meridian, hence no periodic -
stacking. Such disordered columnar structures are more likely to
tolerate a non-integer . We also add that the column thinning is
partially reversible (see Figure S9).
1
29, 10662–10663; (c) Peterca, M.; Percec, V.; Dulcey, A. E.; Nummelin,
S.; Korey, S.; Ilies, M.; Heiney, P. A. J. Am. Chem. Soc. 2006, 128, 6713–
720; (d) Pecinovsky, C. S.; Hatakeyama, E. S.; Gin, D. L. Adv. Mater.
6
2008, 20, 174–178; (e) Soberats, B.; Yoshio, M.; Ichikawa, T.; Zeng, X.
B.; Taguchi, S.; Ohno, H.; Liu, F.; Ungar, G.; Kato, T. J. Am. Chem. Soc.
2
015, 137, 13212-13215.
5
Feng, X.; Tousley, M. E.; Cowan, M. G.; Wiesenauer, B. R.; Nejati,
In conclusion, we have presented a new type of superlattice in
liquid crystals. At the thermal transition from the simple hexago-
nal to the superlattice columnar phase the added alkane diluent is
redistributed into an ordered array of dendron-deficient columns.
This mitigates the large relative drop from 3 to 2 in the number of
dendrons per stratum. The results shed new light on the intriguing
phenomena of heat-thinning columns and supramolecular super-
lattices. This new type of superlattice also shows the way to dis-
tribute a potentially active functional additive in an ordered 2-D
pattern of sizeable period using only small molecules.
S.; Choo, Y.; Noble, R. D.; Elimelech, M.; Gin, D. L. O.; Osuji, C. O.
ACS Nano, 2014, 8, 11977–11986.
6
Feng, X.; Nejati, S.; Cowan, M. G.; Tousley, M. E.; Wiesenauer, B.
R.; Noble, R. D.; Elimelech, M.; Gin, D. L. O.; Osuji, C. O. ACS Nano,
2015, 10, 150-158.
7
Ungar, G.; Zeng, X. B. Soft Matter, 2005, 1, 95-106.
8
Ungar, G.; Liu, F.; Zeng, X. B. Chap. 7 in Handbook of Liquid Crys-
nd
tals, 2 Ed., Vol. 5, ed. Goodby, J. W.; Collins, P. J.; Kato, T.;
Tschierske, C.; Gleeson, H. F.; Reynes, P., VCH_Wiley, Weinheim, 2014,
3
63-436.
9
Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G.; Heck, J. A.
Chem. Eur. J., 2000, 6, 1258-1266.
ASSOCIATED CONTENT
Supporting Information
DSC; X-ray and neutron experimental and additional data; density
maps; calculation; molecular modelling.
1 0
Percec, V.; Holerca, M. N.; Uchida, S.; Cho, W. D.; Ungar, G.; Lee, Y.
S.; Yeardley, D. J. P. Chem. Eur. J. 2002, 8, 1106-1117.
1
1
(a) Beginn, U.; Yan, L. ; Chvalun, S. N.; Shcherbina, M. A.; Baki-
rov, A.; Möller, M. Liq. Cryst. 2008, 35, 1073-1093; (b) Shcherbina, M.
A.; Bakirov, A.; Yakunin, A. N.; Beginn, U.; Yan, L. ; Möller, M.;
Chvalun, S. N. Soft Matter, 2014, 10, 1746-1757.
1 2
AUTHOR INFORMATION
Kwon, J.-K.; Chvalun, S. N.; Blackwell, J.; Percec, V.; Heck, J. A.
Macromolecules 1995, 28, 1552-1558.
Corresponding Author
*g.ungar@sheffield.ac.uk
Present Addresses
‡
Synchrotron Research Inst., Nakhon Ratchasima, Thailand.
Notes
The authors declare no competing financial interests.
ACS Paragon Plus Environment