M.J. Climent et al. / Journal of Catalysis 246 (2007) 136–146
145
Acknowledgments
Support was provided by the Ministerio de Educacion y
Cultura of Spain (project MAT2003-07769-C02-01) and the
Generalidad Valenciana (GV04B-270). I.D. thanks the Consejo
Superior de Investigaciones Científicas for an I3P fellowship.
G.S. thanks Centro de Investigaciones Energeticas, Medioambi-
entales y Tecnologicas and Centro de Proceso de Datos, Univer-
sidad Politecnica de Valencia for the use of their computational
facilities. The contribution of Mr. Pablo Ramos to the experi-
mental work reported herein is also gratefully acknowledged.
References
[1] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Catal. 221 (2004) 472.
[2] A. Cauvel, G. Renard, D. Brunel, J. Org. Chem. 62 (1997) 749.
[3] (a) M. Laspéras, T. Llorett, L. Chaves, I. Rodriguez, A. Cauvel, D. Brunel,
Stud. Surf. Sci. Catal. 108 (1997) 75;
(
b) F. Bigi, S. Carloni, R. Maggi, A. Mazzacani, G. Sartori, Stud. Surf.
Sci. Catal. 130 (2000) 3501;
c) I. Rodriguez, S. Iborra, A. Corma, Appl. Catal. 194–195 (2000) 241.
Fig. 7. Condensation of benzaldehyde (32 mmol) and ethyl acetoacetate
◦
(
28 mmol) at 60 C with diamine B (0.14 mmol) in different solvents
5 mL): DMSO (!); DMF (×); EtOH ("); t-butanol (Q); chlorobenzene (P);
(
(
[
4] (a) Y.V. Subba Rao, D.E. De Vos, P.A. Jacobs, Angew. Chem. Int. Ed.
Engl. 36 (1997) 2661;
toluene (+).
(
b) R. Sercheli, R.M. Vargas, R. Sheldon, U. Schuchardt, J. Mol. Catal.
A 148 (1999) 173;
c) S. Jaenicke, G.K. Chuah, X.H. Lin, X.C. Hu, Microporous Mesoporous
Mater. 35–36 (2000) 143;
d) A.C. Blanc, D.J. Macquarrie, S. Valle, G. Renard, C.R. Quinn, D. Bru-
nel, Green Chem. 2 (2000) 383.
[5] A. Corma, S. Iborra, I. Rodriguez, F. Sanchez, J. Catal. 211 (2002) 208.
seen, the greatest activity is obtained with the most polar sol-
vents [9], (see also the relative rates of ethanol and tert-butanol
in Fig. 7), and the order of reactivity correlates very well with
the dielectric constant: DMSO > DMF > EtOH > t-butanol >
chlorobenzene > toluene. Furthermore, when the condensation
reaction is carried out with nonpolar solvents, the reaction rate
decreases significantly, as occurs when the reaction involves a
charged transition state or a neutral but polarizable transition
state formed through a single concerted step.
(
(
[6] J.-P. Besse, D. Brunel, P. Massiani, D. Tichit, Actual. Chimique 5–6 (2002)
111.
[7] R.W. Alder, Chem. Rev. 89 (1989) 1215.
[8] (a) H.A. Staab, T. Saupe, Angew. Chem Int. Ed. Engl. 27 (1988) 865;
(b) A.L. Llamas-Saiz, C. Foces-Foces, J. Elguero, J. Mol. Struct. 328
(1994) 297.
[9] I. Rodriguez, G. Sastre, A. Corma, S. Iborra, J. Catal. 183 (1999) 14.
4
. Conclusion
[10] (a) B. Siebenhaar, WO 9721659 (1997);
(b) A.J. Kesel, W. Oberthür, WO 9820013 (1998);
(c) J.P. Ferraris, T.L. Lambert, S. Rodriguez, WO 9305077 (1993).
[
11] (a) A. Corma, V. Fornes, R.M. Martin-Aranda, F. Rey, J. Catal. 134 (1992)
8;
b) M.J. Climent, A. Corma, V. Fornés, A. Frau, R. Guil-Lopez, S. Iborra,
J. Primo, J. Catal. 163 (1996) 392.
In this work, diamines with neighbour nitrogen atoms were
5
(
used as base catalysts in the Knoevenagel condensation reac-
tion between benzaldehyde and ethyl cyanoacetoacetate. The
diamines used as catalysts show the feature of stabilising the
proton abstracted in the first step of the reaction due to the ef-
[12] (a) F.S. Prout, U.D. Beaucaire, G.R. Dyrkarcz, W.M. Koppes, R.E. Kuz-
nicki, T.A. Marlewski, J.A. Pienkowski, J.M. Puda, J. Org. Chem. 38
(1973) 1512;
+
fect of a N–H –N interaction between the neighboring atoms
(b) G. Jones, Org. React. 15 (1967) 204;
of the diamine. Nevertheless, the catalytic results do not show
a correlation between proton affinity of the diamine and basic
strength, suggesting that other effects related to the mecha-
nism should be studied. Computational chemistry techniques
have been used to study the three steps of the Knoevenagel
condensation using amine A and DMAN as catalysts and the
results show that the rate-determining step is step 1, which in-
volves release of the proton to the basic catalyst. The ability
to accept the proton by the basic molecules does not corre-
late with the calculated proton affinities due to the influence
of steric factors, making it more difficult to accept the pro-
ton when the catalyst is DMAN. Therefore, the reaction rate
is higher when using amine B, which explains the greater con-
versions found experimentally when using amine B compared
with DMAN.
(
c) J. Guyot, A. Kergomard, Tetrahedron 39 (1983) 1166.
[13] V.K. Valerij, G.I. Rutman, USSR SU1482910 (1989).
[14] (a) J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc. 102 (1980)
9
(
39;
b) M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro, W.J. Hehre, J. Am.
Chem. Soc. 104 (1982) 2797;
c) W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S.
(
Binkley, J. Am. Chem. Soc. 104 (1982) 5039.
[
[
15] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214.
16] (a) J. Simons, P. Jorgensen, H. Taylor, J. Ozment, J. Phys. Chem. 87 (1983)
2
745;
(b) A. Bannerjee, N. Adams, J. Simons, R. Shepard, J. Phys. Chem. 89
(1985) 52.
[
17] (a) J.T. Golab, D.L. Yeager, P. Jorgensen, Chem. Phys. 78 (1983) 175;
(b) C.J. Cerjan, W.H. Miller, J. Chem. Phys. 75 (1981) 2800.
[
[
18] A.D. Becke, J. Chem. Phys. 10 (1993) 5648.
19] (a) R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54 (1971) 724;
(b) W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257;