508
J. Zhang, T. Zhang, G. Ma, K. Yu
Vol. 43
[1] H. Yuksek, Z. Ocak, M. Alkan, U. Bahceci, O. Mustafa,
Molecules, 9, 232 (2004).
[2] S. Mevlut, S. Erdal, Y. Emine, D. Ahmet, I. A. Aykut,
Modelling, Measurement & Control C, 57, 59 (1998).
[3] K. Y. Lee, M. D. Coburn. 3-nitro-1,2,4-triazol-5-one, a
less sensitive explosive US 4 733 610, 1988.
[4] R. Z. Hu, Z. H. Meng, B. Kang, Thermochimica Acta, 275,
159 (1996).
[5] H. X. Ma, J. R. Song, X. H. Sun, R. Z. Hu, K. B. Yu,
Thermochimica Acta, 389, 43 (2002).
[6] J. R. Song, B. K. Ning, R. Z. Hu, B. Kang, Thermochimica
Acta, 352-353, 111 (2000).
[7] J. G. Zhang, T. L. Zhang, Z. R. Wei, Chem. Online, 99100
(1999).
[8] J. G. Zhang, T. L. Zhang, k. B. Yu, Acta Chim. Sinica, 57,
1233 (1999).
[9] J. G. Zhang, T. L. Zhang, K. B. Yu, Chin. J. Inorg. Chem.,
18, 284 (2002).
[10] G. X. Ma, T. L. Zhang, J. G. Zhang, K. B. Yu, Z. Anog.
Allg. Chem., 630, 423 (2004).
[11] M. M. Boudakian, D. A. Fidler. Process for Low Chloride
1,2,4-triazol-5-one US 4 927 940, 1990; Chem. Abstr., 113, P97614r
(1991).
[12] E. F. Rothgery. process for the production of 1,2,4-triazol-
5-one US 5 039 9816, 1991; Chem. Abstr., 115, P208002c (1991).
[13] G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal
Structure Solution, University of Gottingen, Germany, (1997).
[14] G. M. Sheldrick, SHELXL-97, Program for X-ray Crystal
Structure Refinement, University of Gottingen, Germany (1997)
[15] A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
[16] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 785 (1988).
[17] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys.
Lett., 166, 275 (1990).
quencies. The predicted frequencies and intensities for TO
are listed in Table 4 at the B3LYP/cc-pVTZ level of theory.
All theoretical frequencies reported here are listed as cal-
culated, as no scale factor is available for the B3LYP/cc-
pVTZ level of theory. We assigned the main vibrational
frequencies of some function groups. The vibrational fre-
quencies are identical on the whole between theoretical
calculation and the experimental result.
In order to study the possible coordination sites in TO mol-
ecule under formation of complex compounds, quantum
chemistry calculations of molecular electrostatic potential
(MESP) in TO have been carried out. In some cases, calcula-
tions of MESP allow to predict successfully the coordination
sites in molecules [24]. The MESP surface for TO molecule
calculated at B3LYP/cc-pVTZ level of theory is given in
Figure 4. The highest negative values of the electrostatic
potential are located near the N2 atom of the triazole ring and
O atom of the carbonyl group of the TO molecule. It is also
evident that the minima close to the N2 atom of the tetrazole
ring and O atom of the carbonyl group are much deeper than
those close to N1 and N3. Furthermore, in the case of the
experimental structure of [Ag(TO) ]ClO ·H O,[8]
2
4
2
[Cu(TO) (H O) ](PA) [9] and {[Cu(TO) (H O) ](NO ) }
2
2
4
2
2
2
2
3 2 n
complex[10], the most preferable coordination sites in TO
molecule would be the N2 atom of the tetrazole ring and O
atom of the carbonyl group.
Thus, as a whole the results of quantum chemical calcu-
lations are in agreement with the experimental data on
structure of 1,2,4-triazol-5-one (TO) complex.
[18] M. J. Frisch, M. Head-Gordon, J. A. Pople, Chem. Phys.
Lett., 166, 281 (1990).
4. Summary.
[19] M. Head-Gordon, J. A. Pople, M. J. Frisch, Chem. Phys.
Lett., 153, 503 (1988).
[20] T. H. Dunning Jr, J. Chem. Phys., 90, 1007 (1989).
[21] R. A. Kendall, D. J. T.H., R. J. Harrison, J. Chem. Phys.,
96, 6796 (1992).
The molecule structure and crystal structure of 1,2,4-tri-
azol-5-one was determined by X-ray single crystal diffrac-
tion analysis. Quantum-chemical calculations of molecular
electrostatic potential for 1,2,4-triazol-5-one using
MP2/cc-pVTZ and B3LYP/cc-pVTZ levels of theory
showed that the N2 atom of the tetrazole ring and O atom
of the carbonyl group are preferable sites for metal coordi-
nation. This is in agreement with the X-ray structure
results of the 1,2,4-triazol-5-one complex [8-10].
[22] D. E. Woon, D. J. T.H., J. Chem. Phys., 98, 1358 (1993).
[23] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. Montgomery,
J.A., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S.
Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle, J. A. and Pople, Gaussian 98, Revision A.7; Gaussian, Inc.:
Pittsburgh PA,, (1998).
Acknowledgement.
This work is supported by the National Natural Science
Foundation of China (No. 20471008) and the Foundation
for basic research by the Beijing Institute of Technology.
REFERENCES AND NOTES
∗
[24] M. Alcami, O. Mo, M. Yanez, J. Phys. Chem., 96, 3022
(1992).
Corresponding author. Jianguo Zhang, Tel & Fax: 86-10-