J Biol Inorg Chem
1
3. Zeng Y-Q, Cao R-Y, Yang J-L, Li X-Z, Li S, Zhong W (2016)
Eur J Med Chem 119:83–95
Conclusion
1
4. Chetana PR, Srinatha BS, Somashekar MN, Policegoudra RS
N, N′-disubstituted thiourea derivatives and 1,10-phen-
anthroline complexes still receive much attention due to
synthetic convenience and excellent biological activities.
O-, S-, and N-donor atoms and thione, thiol (–N–CS–N–)
groups in the ligands stretch their coordination ability
and popularity towards a variety of metal ions [14]. Four
novel ternary metal complexes of N-benzoylthiourea and
(
2016) J Mol Struct 1106:352–365
15. Singh A, Bharty MK, Bharati P, Bharti A, Singh S, Singh NK
2015) Polyhedron 85:918–925
(
1
1
1
1
6. Selvakumaran N, Pratheepkumar A, Ng SW, Tiekink ERT, Kar-
vembu R (2013) Inorg Chim Acta 404:82–87
7. Rauf MK, Yaseen S, Badshah A, Zaib S, Arshad R, Imtiaz-Ud-
Din, et al (2015) J Biol Inorg Chem 20(3):541–554
8. Plutín AM, Mocelo R, Alvarez A, Ramos R, Castellano EE,
Cominetti MR et al (2014) J Inorg Biochem 134:76–82
9. El-Ayaan U (2011) J Mol Struct 998:11–19
1
,10-phenanthroline derivatives, [Ni(phen)(L ) ], [Co(phen)
1 2
(
L ) ], [Cu(phen)(L ) ], and [Pd(phen)(L ) ], have been
1 2 1 2 1 2
20. Plutín AM, Alvarez A, Mocelo R, Ramos R, Castellano EE, da
Silva MM et al (2016) Inorg Chem Commun 63:74–80
2
synthesized and characterized by their conventional physi-
cal and chemical analyses. UV–Vis and fluorescence spec-
tral studies indicate that all these complexes exhibit efficient
and strong binding abilities with DNA and HSA. The exper-
iments of fluorescence quenching further reveal the strong
interaction of the complexes with HSA protein. Meanwhile,
all ternary complexes can cleavage DNA efficiently. Among
the complexes examined, copper (II) complex exhibits
the strongest DNA binding and cleavage ability. Although
this study is preliminary, they provide the theoretical basis
and experimental data for the study of the potential drug
with nucleic acid as the target based on disubstituted thio-
ureas. We hope to inspire the role and importance of N, N′-
disubstituted thiourea compounds and further work on their
complexes for biomedical applications.
1. Correa RS, Oliveira KM, Pérez H, Plutín AM, Ramos
2
2
2
2. Barra CV, Rocha FV, Morel L, Gautier A, Garrido SS, Mauro AE
et al (2016) Inorg Chim Acta 446:54–60
3. Correa RS, de Oliveira KM, Delolo FG, Alvarez A, Mocelo R,
Plutin AM et al (2015) J Inorg Biochem 150:63–71
4. Sudhamani CN, Bhojya Naik HS, Sangeetha Gowda KR, Girid-
har M, Girija D, Prashanth Kumar PN (2015) Spectrochim Acta
A 138:780–788
2
2
5. Kashanian S, Khodaei MM, Roshanfekr H, Peyman H (2013)
Spectrochim Acta A 114:642–649
6. Gurumoorthy P, Mahendiran D, Prabhu D, Arulvasu C, Rahiman
AK (2015) J Mol Struct 1080:88–98
27. Ganeshpandian M, Ramakrishnan S, Palaniandavar M, Suresh
E, Riyasdeen A, Akbarsha MA (2014) J Inorg Biochem
1
40:202–212
2
2
3
3
3
3
8. Thamilarasan V, Jayamani A, Sengottuvelan N (2015) Eur J Med
Chem 89:266–278
9. Kannan D, Arumugham M (2013) Int J Inorg Bioinorg Chem
Acknowledgments The authors would like to thank the National
Natural Science Foundation of China (21174114, 21167015), the
Innovative Team of Ministry of Education of China (IRT15R56), and
3
:8–15
0. Peng B, Li T, Zhang Z, Shen Y, Zhou M, Mo Z (2014) Chem
Reagents 36:205–261
1. Peng B, Lin B, Zhang Z, Chen P, Ma S (2012) J Northwest Norm
Univ Nat Sci 48:51–56
“Integration and demonstration of the key technology of industrial
capacity promotion for Lanzhou Lily” (2015 technological innovation
special fiscal funds of Gansu province) for financial support.
2. Koch KR, Sacht C, Bourne S (1995) Inorg Chim Acta
2
32:109–115
3. Rotondo A, Barresi S, Cusumano M, Rotondo E (2012) Polyhe-
dron 45:23–29
References
3
3
4. Rao R, Patra AK, Chetana PR (2008) Polyhedron 27:1343–1352
5. Srishailam A, Gabra NM, Kumar YP, Reddy KL, Devi CS, Anil
Kumar D et al (2014) J Photochem Photobiol, B 141:47–58
6. Devi J, Batra N (2015) Spectrochim Acta A 135:710–719
7. Reddy PR, Shilpa A, Raju N, Raghavaiah P (2011) J Inorg Bio-
chem 105:1603–1612
1
2
3
.
.
.
Aly AA, Ahmed EK, El-Mokadem KM, Hegazy ME-AF (2007)
J Sulfur Chem 28:73–93
Lin Q, Yao H, Wei T, Zhang Y (2009) Indian J Chem
3
3
4
8B:124–127
Zhao MM, Dong XY, Yang YH, Li G, Zhang YJ (2014) Asian J
Chem 26:237–240
Xue S, Ke S, Duan L (2004) Chin J Org Chem 24:227–230
Peng H, He H (2007) Chin J Org Chem 27:502–506
Xu Z, Liu B, Dong H, Wang M (2014) Chin J Org Chem
3
3
4
4
4
4
4
4
8. Leela DS, Ushaiah B, Anupama G, Sunitha M, Kumari CG
4
5
6
.
.
.
(
2015) J Fluoresc 25:185–197
9. Zhang Y, Xian L, Wei T, Cai L (2003) Acta Cryst E
E59:o817–o819
0. Cîrcu V, Ilie M, Ili s¸ M, Dumitra s¸ cu F, Neagoe I, P a˘ sculescu S
3
4:2517–2522
7
.
del Campo R, Criado JJ, Garcı ́a E, Hermosa MAR, Jiménez-
(
2009) Polyhedron 28:3739–3746
Sánchez A, Manzano JL et al (2002) J Inorg Biochem 89:74–82
Kurt G, Sevgi F, Mercimek B (2009) Chem Pap 63:548–553
Stefanska J, Szulczyk D, Koziol AE, Miroslaw B, Kedzierska E,
Fidecka S et al (2012) Eur J Med Chem 55:205–213
1. Patel MN, Gandhi DS, Parmar PA, Joshi HN (2012) J Coord
Chem 65:1926–1936
2. Barcelo F, Barcelo I, Gavilanes F, Ferragut JA, Yanovich S, Gon-
zales-Ros JM (1986) Biochim Biophys Acta 884:172–181
3. Liu H, Li L, Guo Q, Dong J, Li J (2013) Transition Met Chem
8
9
.
.
1
1
1
0. Tahir S, Badshah A, Hussain RA, Tahir MN, Tabassum S, Patujo
JA et al (2015) J Mol Struct 1099:215–225
1. Wang M-J, Nan X, Feng G, Yu H-T, Hu G-F, Liu Y-Q (2014) Ind
Crops Prod 55:11–18
2. Maruyama T, Seki N, Onda K, Suzuki T, Kawazoe S, Hayakawa
M et al (2009) Biorg Med Chem 17:5510–5519
3
8:441–448
4. Zhai S, Guo Q, Dong J, Xu T, Li L (2014) Transition Met Chem
9:271–280
3
5. Tabassum S, Zaki M, Afzal M, Arjmand F (2014) Eur J Med
Chem 74:509–523
1
3