1382
Y. Fujimoto et al.
Letter
Synlett
an oxy-Cope rearrangement cleanly under anion-accelerat-
ed conditions. Moreover, the rearrangement proved to be
stereospecific. Each of the isomers allowed dependable for-
mation of either of a geranyl or a neryl side chain. Precise
stereochemical correlation between the rearrangement
precursors and the products revealed a stereochemical
course passing through a chair-like transition-state struc-
ture. The natural product fuscaxanthone F, possessing a ge-
ranyl side chain, and its neryl analogue were synthesized,
demonstrating the utility of the method. As a result, both
the geranylated and nerylated isomers of various xanthones
are now accessible with stereochemical integrity. Needless
to say, there are no known natural xanthones possessing a
neryl side chain. This, in particular, is why the present
method should provide a new opportunity for elucidating
structure–activity relationships for prenylxanthone deriva-
tives.
(3) For a review on the synthesis of prenylxanthones, see: (a) Pinto,
M. M. M.; Castanheiro, R. A. P. Curr. Org. Chem. 2009, 13, 1215.
For reviews on the synthesis of xanthones, see: (b) Masters, K.-
S.; Bräse, S. Chem. Rev. 2012, 112, 3717. (c) Azevedo, C. M. G.;
Afonso, C. M. M.; Pinto, M. M. M. Curr. Org. Chem. 2012, 16,
2818.
(4) (a) Fujimoto, Y.; Itakura, R.; Hoshi, H.; Yanai, H.; Ando, Y.;
Suzuki, K.; Matsumoto, T. Synlett 2013, 24, 2575. (b) Fujimoto,
Y.; Watabe, Y.; Yanai, H.; Taguchi, T.; Matsumoto, T. Synlett
2016, 27, 848. (c) Fujimoto, Y.; Yanai, H.; Matsumoto, T. Synlett
2016, 27, 2229.
(5) For other examples of syntheses of naturally occurring 1-
prenylxanthones, see: (a) Quillinan, A. J.; Scheinmann, F.
J. Chem. Soc., Perkin Trans. 1 1972, 1382. (b) Quillinan, A. J.;
Scheinmann, F. J. Chem. Soc., Perkin Trans. 1 1975, 241. (c) Lee,
H.-H. J. Chem. Soc., Perkin Trans. 1 1981, 3205. (d) Iikubo, K.;
Ishikawa, Y.; Ando, N.; Umezawa, K.; Nishiyama, S. Tetrahedron
Lett. 2002, 43, 291. (e) Xu, D.; Nie, Y.; Liang, X.; Ji, L.; Hu, S.; You,
Q.; Wang, F.; Ye, H.; Wang, J. Nat. Prod. Commun. 2013, 8, 1101.
(f) Ito, S.; Kitamura, T.; Arulmozhiraja, S.; Manabe, K.; Tokiwa,
H.; Suzuki, Y. Org. Lett. 2019, 21, 2777.
(6) For other reports on anion-accelerated aromatic oxy-Cope rear-
rangement, see: (a) Jung, M. E.; Hudspeth, J. P. J. Am. Chem. Soc.
1978, 100, 4309. (b) Marvell, E. N.; Almond, S. W. Tetrahedron
Lett. 1979, 20, 2779. (c) Seki, K.; Tooya, M.; Sato, T.; Ueno, M.;
Uyehara, T. Tetrahedron Lett. 1998, 39, 8673.
(7) To avoid confusing discussion, we opted not to record the
results from the use of the parent compound 1-fluoroxanthone
(20) as the starting material in the main text because of the for-
mation of the byproducts (Z)- and (E)-23 as a result of the
migration of the C10 unit to the C(8) position (Scheme 11). Such
migration to the undesired position did not occur when the
starting xanthone was substituted by an inductively electron-
withdrawing group at C(2) or C(3), as in 2 and 5, or by an alkyl
group at C(8), as in 7 (see ref. 4b). Nonetheless, it is worth
Funding Information
This work was financially supported by the Japan Society for the Pro-
motion of Science (JSPS KAKENHI Grant Number JP17K15425) and
the Ministry of Education, Culture, Sports, Science and Technology
(MEXT-Supported Program for the Private University Research Brand-
ing Project).
M
i
n
i
stryof
E
d
u
c
ati
o
n
,
C
u
l
ture
,
S
p
orst,
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
()J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(J
P
1
7
K
1
5
4
2
5)
Acknowledgment
The authors are grateful to Professor Satoshi Yokojima, Tokyo Univer-
sity of Pharmacy and Life Sciences, for his helpful advice on computa-
tional chemistry.
Supporting Information
F
O
F
MgCl
OH
8
*
1
8
Supporting information for this article is available online at
*
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
THF, –78 °C
10 min
O
O
20
21a:21b = 1.1:1
95%
References and Notes
δ
c 16.3
δ
c 25.7
δ
c 17.6
δ
c 25.6
(1) For reviews on natural xanthones, see: (a) Klein-Júnior, L. C.;
Campos, A.; Niero, R.; Corr̂ea, R.; Vander Heyden, Y.; Cechinel
Filho, V. Chem. Biodivers. 2020, 17, e1900499. (b) El-Seedi, H. R.;
El-Barbary, M. A.; El-Ghorab, D. M. H.; Bohlin, L.; Borg-Karlson,
A.-K.; Göransson, U.; Verpoorte, R. Curr. Med. Chem. 2010, 17,
854. (c) Pinto, M. M. M.; Sousa, M. E.; Nascimento, M. S. J. Curr.
Med. Chem. 2005, 12, 2517.
(2) For recent examples of biological studies on prenylated xantho-
nes, see: (a) Natrsanga, P.; Jongaramruong, J.; Rassamee, K.;
Siripong, P.; Tip-pyang, S. J. Nat. Med. 2020, 74, 467. (b) Li, P.;
Yang, Z.; Tang, B.; Zhang, Q.; Chen, Z.; Zhang, J.; Wei, J.; Sun, L.;
Yan, J. ACS Omega 2020, 5, 334. (c) Jin, S.; Shi, K.; Liu, L.; Chen, Y.;
Yang, G. Int. J. Mol. Sci. 2019, 20, 4803. For a review, see:
(d) Pinto, M. M. M.; Castanheiro, R. A. P. In Natural Products:
Chemistry, Biochemistry and Pharmacology; Brahmachari, G.,
Ed.; Alpha Science: Oxford, 2009, 520.
δ
c 23.6
Z
KN(SiMe3)2
18-crown-6
E
21a
(more polar)
O
O
F
O
O
δ
c 17.7
H
THF, 0 °C
10 min, in darkness
H
H
(E)-22 66%
(Z)-23 5%
c 17.7
δ
δ
c 23.6
δ
c 25.7
c 17.7
δc 25.7
E
δ
c 16.2
Z
KN(SiMe3)2
18-crown-6
δ
O
O
F O
H
21b
(less polar)
THF, 0 °C
10 min, in darkness
O
H
H
(Z)-22 66%
(E)-23 8%
Scheme 11 The reaction of 1-fluoroxanthone (20)
© 2020. Thieme. All rights reserved. Synlett 2020, 31, 1378–1383