Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC05938H
COMMUNICATION
Journal Name
devices can be possibly used for encrypted information There are no conflicts of interest to declare.
storage and display meeting today’s needs of privacy and
security. Besides, multistage information can be attached if
Notes and references
color is endowed with cipher. The encrypted device which is
applied in confidential message storage and display was shown
in the schematic diagram (Fig. 4a). Based on such proposal, our
RGB color-tunable EFC devices were utilized as an interesting
multistage encrypted information storage and display. Due to
that fluorescent change is always coupled with color changing
which can disturb the application of security information
display, ion conductive layer and ion storage layer were mixed
with conductive carbon black which can eliminate the
interference of color change (Fig. S16-S18). The carbon black at
ion conductive layer and ion storage layer would not hinder
the emission of these devices (Fig. S19). As shown in Fig. 4b,
"SOS" letters were displayed in our RGB color-tunable EFC
demo device (Scheme S5) only when electricity (-1.2 V) and
excitation light (365 nm) were input simultaneously. However,
no letter can be seen if either electricity (-1.2 V) or excitation
light (365 nm) was input alone. More interestingly, for this
three-letter device, 27 color combinations can be chosen to
transmit one additional information when the device was
made. And 19683 color combinations can be chosen in nine-
number encryption digiboard to transmit one additional
information when the sequence of the number was stored in
the device. Only when electricity (-1.2 V) and excitation light
(365 nm) were input simultanuously, can the inputted
sequence of number and color combination be read as shown
in Fig. 4c. The so many choices (19683) show the great
importance of multicolor for the real applications of EFC
devices.
1. A. Beneduci, S. Cospito, M. La Deda, L. Veltri and G. Chidichimo,
Nat. Commun., 2014, 5, 3105.
2. X. Yang, S. Seo, C. Park and E. Kim, Macromolecules, 2014, 47,
7043-7051.
3. P. Audebert and F. Miomandre, Chem. Sci., 2013, 4, 575-584.
4. A. Beneduci, S. Cospito, M. L. Deda and G. Chidichimo, Adv.
Funct. Mater., 2015, 25, 1240-1247.
5. A. N. Woodward, J. M. Kolesar, S. R. Hall, N. A. Saleh, D. S. Jones
and M. G. Walter, J. Am. Chem. Soc., 2017, 139, 8467-8473.
6. Y. Kim, J. Do, E. Kim, G. Clavier, L. Galmiche and P. Audebert, J.
Electroanal. Chem., 2009, 632, 201-205.
7. C. P. Kuo, C. L. Chang, C. W. Hu, C. N. Chuang, K. C. Ho and M. K.
Leung, ACS Appl. Mater. Interfaces, 2014, 6, 17402-17409.
8. X. Zhu, R. Liu, Y. Li, H. Huang, Q. Wang, D. Wang, X. Zhu, S. Liu
and H. Zhu, Chem. Commun., 2014, 50, 12951-12954.
9. F. M. Raymo, Adv. Mater., 2002, 14, 401-414.
10. F. M. Raymo and S. Giordani, Org. Lett., 2001, 3, 1833-1836.
11. J. H. Wu and G. S. Liou, Adv. Funct. Mater., 2014, 24, 6422-6429.
12. S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert and E. Kim, Adv.
Funct. Mater., 2012, 22, 3556-3561.
13. M. Walesa-Chorab and W. G. Skene, ACS Appl. Mater.
Interfaces, 2017, 9, 21524-21531.
14. C. P. Kuo, C. N. Chuang, C. L. Chang, M. K. Leung, H. Y. Lian and
K. C. W. Wu, J. Mater. Chem. C, 2013, 1, 2121-2130.
15. Y. Kim, E. Kim, G. Clavier and P. Audebert, Chem. Commun.,
2006, 3612-3614.
16. H. Al-Kutubi, H. R. Zafarani, L. Rassaei and K. Mathwig, Eur.
Polym. J., 2016, 83, 478-498.
17. C. P. Kuo and M. K. Leung, Phys. Chem. Chem. Phys., 2014, 16,
79-87.
18. S. Seo, S. Pascal, C. Park, K. Shin, X. Yang, O. Maury, B. D.
Sarwade, C. Andraud and E. Kim, Chem. Sci., 2014, 5, 1538-
1544.
19. N. L. Bill, J. M. Lim, C. M. Davis, S. Bahring, J. O. Jeppesen, D.
Kim and J. L. Sessler, Chem. Commun., 2014, 50, 6758-6761.
20. K. Kanazawa, K. Nakamura and N. Kobayashi, Sol. Energy Mater.
Sol. Cells, 2016, 145, 42-53.
In conclusion, RGB color-tunable EFC devices (red, green,
and blue) with a "turn-on" mode were newly fabricated based
on the same electro-base mechanism. Such "turn-on" color-
tunable EFC devices, containing pH-sensitive fluorescence
molecules and p-BQ as an electro-base, show high color purity
(457 nm for blue, 539 nm for green, and 641 nm for red),
relatively quick cycle speed (response/fading time: 970 ms/750
ms for blue, 720 ms/760 ms for green, and 2.05 s/3.36 s for 21. S. Swaminathan, M. Petriella, E. Deniz, J. Cusido, J. D. Baker, M.
L. Bossi and F. M. Raymo, J. Phys. Chem. A, 2012, 116, 9928-
9933.
22. S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves, E. L.
Dunphy, M. Tomasulo, F. M. Raymo and A. Credi, Chem. - Eur.
J., 2009, 15, 178-185.
23. Y. M. Zhang, M. Li, W. Li, Z. Huang, S. Zhu, B. Yang, X. C. Wang
and S. X. Zhang, J. Mater. Chem. C, 2013, 1, 5309-5314.
24. Y. M. Zhang, W. Li, X. Wang, B. Yang, M. Li and S. X. Zhang,
Chem. Commun., 2014, 50, 1420-1422.
25. B. C. Dickinson, C. Huynh and C. J. Chang, J. Am. Chem. Soc.,
2010, 132, 5906-5915.
red) along with high fluorescent contrast ratio (255 for blue,
156 for green, and 425 for red), and excellent durability. The
potential application in encrypted information storage and
display was exhibited. In addition, the screening criterion
(electrochemical stability and pH sensitivity) of desirable pH-
sensitive fluorescence materials for ideal EFC devices using
electro-base
mechanism
was
systematically
and
comprehensively elaborated. Thus, this paper opens a new
way for developing different color EFC devices, and will surely
stimulate and accelerate more applications in future, such as
multi-functional electronic displays.
26. Z. Guo, P. Zhao, W. Zhu, X. Huang, Y. Xie and H. Tian, J. Phys.
Chem. C, 2008, 112, 7047-7053.
27. H. J. Yen and G. S. Liou, Chem. Commun., 2013, 49, 9797-9799.
This study was supported by the National Science
Foundation of China (Grant No. 21602075, 21572079) and the
program of Chang Jiang Scholars and Innovative Research
Team in the University (IRT101713018) for financial support.
Conflicts of interest
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins