Organometallics
Communication
(8) (a) Eaton, P. E.; Cassar, L.; Halpern, J. J. Am. Chem. Soc. 1970,
92, 6366−6368. (b) Gassman, P. G.; Atkins, T. J. J. Am. Chem. Soc.
1971, 93, 1042−1043. (c) Golden, H. J.; Baker, D. J.; Miller, R. G. J.
Am. Chem. Soc. 1974, 96, 4235−4243. (d) Sohn, M.; Blum, J.;
Halpern, J. J. Am. Chem. Soc. 1979, 101, 2694−2698. (e) Gassman, P.
G.; Atkins, T. J. J. Am. Chem. Soc. 1971, 93, 4597−4599.
(9) (a) Perthuisot, C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116,
3647−3648. (b) Edelbach, B. L.; Vicic, D. A.; Lachicotte, R. J.; Jones,
W. D. Organometallics 1998, 17, 4784−4794. (c) Bart, S. C.; Chirik, P.
J. J. Am. Chem. Soc. 2003, 125, 886−887.
8304−8308. (f) Majek, M.; Filace, F.; Jacobi von Wangelin, A. Chem. -
Eur. J. 2015, 21, 4518−4522.
(22) The lifetime for TEMPO-Bn at 125 °C is measured to be ∼4.5
h. Skene, W. G.; Belt, S. T.; Connolly, T. J.; Hahn, P.; Scaiano, J. C.
Macromolecules 1998, 31, 9103−9105.
(23) Colket, M. B.; Seery, D. J. Symp. (Int.) Combust., [Proc.] 1994,
25, 883−891.
(24) CoII(ttp) end-capped oligomers were detected by MALDI-TOF
Information for structural assignment and mass spectral interpretation.
(25) Computed activation parameters for the thermolysis of PCP at
188 °C are ΔH⧧ = +37.7 0.5 kcal mol−1, ΔS⧧ = +2.7 1.1 cal mol−1
K−1, and ΔG⧧ = +36.5 0.5 kcal mol−1. Roth, W. R.; Hopf, H.; de
(10) (a) Chan, K. S.; Li, X. Z.; Zhang, L.; Fung, C. W.
Organometallics 2007, 26, 2679−2687. (b) Chan, K. S.; Li, X. Z.;
Dzik, W. I.; de Bruin, B. J. Am. Chem. Soc. 2008, 130, 2051−2061.
(11) (a) To, C. T.; Choi, K. S.; Chan, K. S. J. Am. Chem. Soc. 2012,
134, 11388−11391. (b) To, C. T.; Tam, C. M.; Chan, K. S. ACS Catal.
2015, 5, 4333−4336.
Meijere, A.; Hunold, F.; Borner, S.; Neumann, M.; Wasser, T.;
̈
Szurowski, J.; Mlynek, C. Liebigs Ann. 1996, 1996, 2141−2154.
(26) (a) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B.
J. Am. Chem. Soc. 2010, 132, 10891−10902. (b) Dzik, W. I.; Zhang, X.
P.; de Bruin, B. Inorg. Chem. 2011, 50, 9896−9903.
(12) M−CH3 bond dissociation energy (BDE) in MIII(Por)−CH3
complexes, where MIII(por) = Co(tpp) (18.7 kcal mol−1), Rh(txp)
(56.9 kcal mol−1), and Ir(txp) (62 kcal mol−1) (tpp = tetraphenylpor-
phyrinato dianion and txp = tetraxylylporphyrinato dianion).
(a) Fukuzumi, S.; Miyamoto, K.; Suenobu, T.; Caemelbecke, E. V.;
Kadish, K. M. J. Am. Chem. Soc. 1998, 120, 2880−2889. (b) Wayland,
B. B.; Marinho, J. A. Energetics of Organometallic Species 1992, 69−74.
(c) Wayland, B. B. Personal vommunication; Temple University,
Philadelphia, PA, 2007.
(27) The rate constant for homolysis of (PPh3)CoIII(oep)Bn (oep =
octaethylporphyrinato dianion) was found to be 5.2 × 104 s−1 at 70.4
°C. Geno, M. K.; Halpern, J. J. Am. Chem. Soc. 1987, 109, 1238−1240.
(13) Cui, W. H.; Li, S.; Wayland, B. B. J. Organomet. Chem. 2007,
692, 3198−3206.
(14) (a) King, R. B.; Efraty, A. J. Am. Chem. Soc. 1972, 94, 3773−
3779. (b) Muller, J.; Wurtele, C.; Walter, O.; Schindler, S. Angew.
̈
̈
Chem., Int. Ed. 2007, 46, 7775−7777. (c) Nicholls, J. C.; Spencer, J. L.
Organometallics 1994, 13, 1781−1787. (d) Cracknell, R. B.; Nicholls, J.
C.; Spencer, J. L. Organometallics 1996, 15, 446−448. (e) Halle, L. F.;
Crowe, W. E.; Armentrout, P. B.; Beauchamp, J. L. Organometallics
1984, 3, 1694−1706. (f) Hornung, G.; Schroder, D.; Schwarz, H. J.
̈
Am. Chem. Soc. 1995, 117, 8192−8196. (g) Perthuisot, C.; Edelbach,
B. L.; Zubris, D. L.; Jones, W. D. Organometallics 1997, 16, 2016−
2023. (h) Schwager, H.; Spyroudis, S.; Vollhardt, K. P. C. J. Organomet.
Chem. 1990, 382, 191−200. (i) Arce, M.-J.; Viado, A. L.; An, Y.-Z.;
Khan, S. I.; Rubin, Y. J. Am. Chem. Soc. 1996, 118, 3775−3776.
(15) (a) Dzwiniel, T. L.; Etkin, N.; Stryker, J. M. J. Am. Chem. Soc.
1999, 121, 10640−10641. (b) Dzwiniel, T. L.; Stryker, J. M. J. Am.
Chem. Soc. 2004, 126, 9184−9185. (c) Butenschon, H. Angew. Chem.,
̈
Int. Ed. 2008, 47, 5287−5290.
(16) (a) Ozawa, F.; Iri, K.; Yamamoto, A. Chem. Lett. 1982, 11,
1707−1710. (b) Xu, H.; Williard, P. G.; Bernskoetter, W. H.
Organometallics 2012, 31, 1588−1590.
(17) Ozkal, E.; Cacherat, B.; Morandi, B. ACS Catal. 2015, 5, 6458−
6462.
(18) The amount of residual water in DMF used was 0.2% (≤23
equiv with respect to 1).
(19) The amount of residual water in DMF-d7 used was 0.1% (≤12
equiv with respect to 4.80 mM of 1 and ≤ 2.9 equiv with respect to
19.2 mM of 1).
(20) Together with experimental error, the presence of a competitive
hydrogen source in the reaction mixture might lead to incomplete
deuteration. (a) Majek, M.; Filace, F.; Jacobi von Wangelin, A. Chem. -
Eur. J. 2015, 21, 4518−4522. (b) Doyle, M. P.; Dellaria, J. F.; Siegfried,
B.; Bishop, S. W. J. Org. Chem. 1977, 42, 3494−3498.
(21) Both formyl and N-methyl C−H bonds of DMF were computed
to have similar BDEs in the range of 89−95 kcal mol−1 and have been
shown to serve as hydrogen atom donors. (a) Markgraf, J. H.; Chang,
R.; Cort, J. R.; Durant, J. L.; Finkelstein, M.; Gross, A. W.; Lavyne, M.
H.; Moore, W. M.; Petersen, R. C.; Ross, S. D. Tetrahedron 1997, 53,
10009−10018. (b) Salamone, M.; Milan, M.; DiLabio, G. A.; Bietti, M.
J. Org. Chem. 2013, 78, 5909−5917. (c) Gardini, G. P.; Minisci, F.;
Palla, G.; Arnone, A.; Galli, R. Tetrahedron Lett. 1971, 12, 59−62.
(d) Wassmundt, F. W.; Kiesman, W. F. J. Org. Chem. 1995, 60, 1713−
1719. (e) Wassmundt, F. W.; Kiesman, W. F. J. Org. Chem. 1997, 62,
D
Organometallics XXXX, XXX, XXX−XXX