C. Biot et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6434–6438
6437
19. Details of the typical synthetic procedure and spectro-
scopic data of the representative conjugates 4c and 5c are
displayed as follows. The thiosemicarbazone thioester 2
(76 mg, 0.18 mM) (or 3, 173 mg, 0.57 mM) was refluxed
with the corresponding amine (R-NH2) in methanol
(5 mL) for 4 h. After cooling, the solvent was removed
under reduced pressure. N-{2-[(7-Chloroquinolin-4-ylami-
no)methyl]ferrocenyl}-2-[1-(3,4-dichlorophenyl)ethylidene]-
hydrazinecarbothioamide 4c. The crude product was
purified by silica-gel chromatography (6:2:1, ethyl ace-
tate:petroleum ether: triethylamine) to give 4c (18 mg,
0.03 mM, 15%) as a yellow solid. Mp 98–102 °C. 1H NMR
(300 MHz; CDCl3) d 8.43 (d, 1H, J = 5.37 Hz), 7.83 (d,
1H, J = 1.98 Hz), 7.74 (d, 1H, J = 2.13 Hz), 7.60 (d, 1H,
J = 8.85 Hz), 7.40 (d. 1H, J = 8.46 Hz), 7.25 (d, 1H, J =
8.55 Hz), 7.06 (dd, 1H, J = 2.01 and 8.97 Hz), 6.45 (d, 1H,
J = 5.43 Hz), 4.40 (m, 1H), 4.32 (m, 1H), 4.18 (br s, 6H).
4.15 (m, 1H). 4.14 (m, 1H), 3.41 (s, 2H). 2.01 (s, 3H); 13C
NMR (75 MHz; CDCl3) d 208.0, 176.7, 145.2, 136.8,
134.8, 133.9, 132.8, 130.4, 127.9, 125.3, 124.9, 121.8 (2C),
117.0, 98.9, 83.1 (2C), 70.7, 70.3, 69.4 (5C), 67.4, 41.1,
29.7, 13.4; HRMS (electrospray) m/z 649: M°+
35Cl35Cl35Cl, 650: MH+ 35Cl35Cl35Cl, 651: M°+
35Cl35Cl37Cl, 652: MH+ 35Cl35Cl37Cl, 653: M°+ 35Cl37
Cl37Cl, 655: M°+37Cl37Cl37Cl. N-{2-[(7-Chloroquinolin-4-
ylamino)methyl]ferrocenyl}-1-[1-(3-bromophenyl)ethylidene]-
hydrazinecarbothioamide 5c. The crude product was
purified by silica-gel chromatography (6:2:1. ethyl ace-
tate:petroleum ether: triethylamine) to give 5c (60 mg,
0.09 mM, 15%) as a yellow solid. Mp 103–105 °C.
1HNMR (300 MHz; CDCl3) d 8.40 (d, 1H, J = 4.99 Hz),
7.78 (d, 1H, J = 2.34 Hz), 7.66 (m, 1H), 7.61 (s, 1H), 7.60
(d, 1H, J = 7.51 Hz), 7.40 (d, 1H, J = 7.99 Hz), 7.32 (d,
1H, J = 7.52 Hz), 7.09 (dd, 1H, J = 1.88 and 9.45 Hz), 6.45
(d, 1H, J = 5.30 Hz), 4.46 (m, 1H). 4.30 (m, 1H), 4.16 (br s,
6H), 4.15 (m, 1H), 4.14 (m, 1H), 3.65. (s, 2H), 2.01 (s, 3H);
13CNMR (75 MHz; CDCl3) d 211.7,176.7 (2C), 151.8,
149.1 (2C), 146.1, 138.9, 132.7, 130.0, 129.1, 124.9, 122.7,
121.7, 117.0, 99.0, 83.3 (2C), 70.6, 70.1, 69.5 (5C), 67.4,
46.1, 41.0, 29.7, 13.5; HRMS (electrospray) m/z 659: M°+
35Cl79Br, 661: M°+ 35Cl81Br and 37Cl79Br, 663: M°+
37Cl81Br.
Previously, it has been demonstrated that FQ has re-
duced affinity for mutant forms of the P. falciparum
chloroquine resistance transporter (PfCRT), a protein
located in the parasite digestive vacuole and involved
in drug transport and chloroquine resistance.27–29 Spe-
cific mutations in PfCRT mediate resistance to chloro-
quine.30 However, once again, there was no significant
difference in the activity of ferrocenyl compounds be-
tween chloroquine susceptible and chloroquine-resistant
parasites.
Acknowledgments
The authors thank R. Amalvict, E. Baret, and J. Mos-
nier for technical support. This work was supported in
part by grants from the National Institutes of Health,
USA. P.J.R. is a Doris Duke Charitable Foundation
Distinguished Clinical Scientist.
References and notes
1. Biot, C. Curr. Med. Chem.: Anti-infect. Agents 2004, 3,
135.
2. Dive, D.; Biot, C. Chemmedchem. in press.
3. Chibale, K.; Moss, J. R.; Blackie, M.; van Schalkwyk, D.;
Smith, P. J. Tetrahedron Lett. 2000, 41, 6231.
4. Beagley, P.; Blackie, M. A. L.; Chibale, K.; Clarkson, C.;
Hutton, A. T.; Meijboom, R.; Moss, J. R.; Smith, P. J.;
Su, H. Dalton Trans. 2003, 3046.
5. Biot, C.; Dessolin, J.; Ricard, I.; Dive, D. J. Organomet.
Chem. 2004, 689, 4678.
6. More recently. see Biot, C.; Daher, W.; Ndiaye, C.
M.; Melnyk, P.; Pradines, B.; Chavain, N.; Pellet,
A.; Fraisse, L.; Pelinski, L.; Jarry, C.; Brocard, J.;
Khalife, J.; Forfar-Bares, I.; Dive, D. J. Med. Chem.
2006, 49, 4707.
7. Klayman, D. L.; Bartosevich, J. F.; Griffin, T. S.; Mason,
C. J.; Scovill, J. P. J. Med. Chem. 1979, 22, 855.
8. Scovill, J. P.; Klayman, D. L.; Lambros, C.; Childs, G. E.;
Notsch, J. D. J. Med. Chem. 1984, 27, 87.
20. Munyololo, M. M.Sc. Thesis, University of Cape Town.
2006.
9. Ames, J. R.; Ryan, M. D.; Klayman, D. L.; Kovacic, P.
J. Free Radic. Biol. Med. 1985, 1, 353.
21. Audrieth, L. F.; Scott, E. S.; Kippur, P. S. J. Org. Chem.
1954, 19, 733.
10. Klayman, D. L.; Acton, N.; Scovill, J. P. Arzneimittelf-
orschung 1986, 36, 10.
11. Greenbaum, D. C.; Mackey, Z.; Hansell, E.; Doyle, P.;
Gut, J.; Caffrey, C. R.; Lehrman, J.; Rosenthal, P. J.;
McKerrow, J. H.; Chibale, K. J. Med. Chem. 2004, 47,
3212.
12. Chipeleme, A.; Gut, J.; Rosenthal, P. J.; Chibale, K.
Bioorg. Med. Chem. 2007, 15, 273.
13. Dechy-Cabaret, O.; Benoit-Vical, F.; Robert, A.; Meunier,
B. Chembiochem 2000, 1, 281.
14. Basco, L. K.; Dechy-Cabaret, O.; Ndounga, M.; Meche,
F. S.; Robert, A.; Meunier, B. Antimicrob. Agents
Chemother. 2001, 45, 1886.
15. Davioud-Charvet, E.; Delarue, S.; Biot, C.; Schwobel, B.;
Boehme, C. C.; Mussigbrodt, A.; Maes, L.; Sergheraert,
C.; Grellier, P.; Schirmer, R. H.; Becker, K. J. Med. Chem.
2001, 44, 4268.
16. Biot, C.; Dessolin, J.; Grellier, P.; Davioud-Charvet, E.
Redox Rep. 2003, 8, 280.
17. Grellepois, F.; Grellier, P.; Bonnet-Delpon, D.; Begue, J.
P. Chembiochem 2005, 6, 648.
22. Chloroquine diphosphate was purchased from Sigma.
Ferroquine base (SR97193) was obtained from Sanofi-
Aventis (France). The antimalarial activity of all the
synthesized compounds was tested against P. falciparum
strains 3D7 (Africa), W2 (Indochina), FCR3 (Gambia),
and Bre1 (Brazil) (one chloroquine-susceptible and three
chloroquine-resistant strains, respectively) and compared
with that of chloroquine and ferroquine. Parasites were
maintained in culture in RPMI 1640 (Invitrogen, Paisley,
United Kingdom) supplemented with 10% human serum
(Abcys S.A., Paris, France) and buffered with 25 mM
Hepes and 25 mM NaHCO3. Parasites were grown in
A-positive human (Etablissement Franc¸ais du Sang, France)
under a controlled atmosphere (10% O2, 5% CO2, and 85%
N2 at 37 °C, humidity 95%). FQ and thiosemicarbazone-
ferroquine hybrids were dissolved in DMSO 1% (v/v) in
RPMI. Twofold serial dilutions with final concentrations
ranging from 0.01 to 200 lM were prepared in DMSO 1%
in RPMI and distributed into Falcon 96-well plates just
before use. For in vitro isotopic microtests 25 lL/well of
the molecules and 200 lL/well of the suspension of
parasitized erythrocytes (final parasitemia 0.5–1%, mostly
young trophozoites; final hematocrit 1.5%) were distrib-
18. Walsh, J. J.; Coughlan, D.; Heneghan, N.; Gaynor, C.;
Bell, A. Bioorg. Med. Chem. Lett. 2007, 17, 3599.