C O M M U N I C A T I O N S
Table 1. Screen of Achiral Protonating Agent for Catalytic
Scheme 3
Enantioselective Reaction
entry
achiral protonating agent
yield (%)a
eeb
1
2
3
4
5
6c
2,6-diisopropylphenol
diethylamine
diisopropylamine
piperidine
2,2,6,6-tetramethylpiperidine
2,2,6,6-tetramethylpiperidine
85
79
65
75
80
45
55
65
94
76
96
96
shown that no formation of 2a took place with 2,2,6,6-tetrameth-
ylpiperidine alone, thus suggesting that achiral 2,2,6,6-tetrameth-
ylpiperidine is responsible for the regeneration of chiral oxazoli-
dinone catalyst 3 in the catalytic cycle, as proposed.
a Isolated yield. b Determined by chiral HPLC analysis. c 0.5 equiv of
catalyst 3 was used.
In summary, we have discovered a novel catalytic asymmetric
approach for the highly enantioselective synthesis of chiral phtha-
lides (up to 99% ee) using samarium diiodide protocol. The
combination of chiral oxazolidinone 3 and achiral amine 4
constitutes an efficient catalyst system for the asymmetric reductive
cyclization of a wide range of 2-acylarylcarbonylates. This method
provides new insights to the asymmetric reduction of carbonyl as
well as the asymmetric protonation. Further mechanistic studies of
the new catalytic system and the extension of the method are
currently underway.
Table 2. The SmI2-Induced Catalytic Enantioselective Synthesis
of Chiral Phthalides
entrya
1
R1
R2
2
yield (%)b
eec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1a
1b
1c
1d
1e
1f
1g
1h
1i
1j
1k
1l
1m
1n
1o
1p
C6H5
H
H
H
H
H
H
H
H
H
H
2a
2b
2c
2d
2e
2f
2g
2h
2i
2j
2k
2l
2m
2n
2o
2p
80
81
82
83
85
75
72
83
65
62
76
76
80
76
83
80
96
94
96
97
92
97
97
95
96
97
97
95
98
97
99
97
4-CH3C6H4
4-OCH3C6H4
4-FC6H4
Acknowledgment. Financial support from the National Natural
Science Foundation of China (20402018, 203900506), Shanghai
Rising-Star Program (05QMX1467), and the Chinese Academy of
Sciences is acknowledged.
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
4-BrC6H4
3,4-(CH3)2C6H3
3,4-(OCH3)2C6H3
2-naphthyl
2-furanyl
2-thiophenyl
4-BrC6H4
4-Br
C6H5
4-OCH3
4,5-C4H4
4,5-(Cl)2
4-CH3
References
4-CH3C6H4
4-CH3C6H4
4-CH3C6H4
C6H5
(1) Devon, T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds;
Academic Press: New York, 1975; Vol. 1, pp 249-264.
(2) (a) Knepper, K.; Ziegert, R. E.; Bra¨se, S. T. Tetrahedron 2004, 60, 8591
and references therein. (b) Hung, T. V.; Mooney, B. A.; Prager, R. H.;
Tippett, J. M. Aust. J. Chem. 1981, 34, 383.
3,6-(CH3)2
a See Supporting Information for reaction details. b Isolated yield.
c Determined by chiral HPLC analysis.
(3) For selected examples, see: (a) Kosaka, M.; Sekiguchi, S.; Naito, J.;
Uemura, M.; Kuwahara, S.; Watanabe, M.; Harada, N.; Hiroi, K. Chirality
2005, 17, 218. (b) Witulski, B.; Zimmermann, A. Synlett 2002, 1855. (c)
Annunziata, R.; Benaglia, M.; Cinquini, M.; Cozzi, F.; Giaroni, P. J. Org.
Chem. 1992, 57, 782. (d) Watanabe, M.; Hashimoto, N.; Araki, S.;
Butsugan, Y. J. Org. Chem. 1992, 57, 742. (e) Takahashi, H.; Tsubuki,
T.; Higashiyama, K. Synthesis 1992, 681. (f) Ogawa, Y.; Hosaka, K.;
Chin, M.; Mitsuhashi, H. Heterocycles 1989, 29, 865. (g) Kitayama, T.
Tetrahedron: Asymmetry 1997, 8, 3765. (h) Ramachandran, P. V.; Chen,
G.-M.; Brown, H. C. Tetrahedron Lett. 1996, 37, 2205. (i) Meyers, A. I.;
Hanagan, M. A.; Trefonas, L. M.; Baker, R. J. Tetrahedron 1983, 39,
1991. For an axially chiral phthalide example, see: (j) Tanaka, K.; Nishida,
G.; Wada, A.; Noguchi, K. Angew. Chem., Int. Ed. 2004, 43, 6510.
(4) Catalytic hydrogenation: (a) Ohkuma, T.; Kitamura, M.; Noyori, R.
Tetrahedron Lett. 1990, 31, 5509. Transfer hydrogenation: (b) Everaere,
K.; Scheffler, J.-L.; Mortreux, A.; Carpentier, J.-F. Tetrahedron Lett. 2001,
42, 1899. For an example of Ni-catalyzed cross couplings, see: (c) Lei,
J.-G.; Hong, R.; Yuan, S.-G.; Lin, G.-Q. Synlett 2002, 927.
(5) Ohkuma, T.; Noyori, R.; Nishiyama, H.; Itsuno, S. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Chapter 6, pp 199-318.
(6) For reviews, see: (a) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem.
ReV. 2004, 104, 3371. (b) Kagan, H. B. Tetrahedron 2003, 59, 10351. (c)
Krief, A.; Laval, A. M. Chem. ReV. 1999, 99, 745. (d) Skrydstrup, T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 345. (e) Molander, G. A.; Harris,
C. R. Chem. ReV. 1996, 96, 307.
is almost comparable to that obtained with a stoichiometric amount
of 3. Further decreasing the loading of 3 to 0.05 equiv resulted in
a dramatic decrease of the reaction yield (45%), though the enan-
tiomeric excess was retained (entry 6). Thus, 2,2,6,6-tetrameth-
ylpiperidine turned out to be the best achiral protonating agent
examined.
With the catalytic system optimized, we then turned our attention
to substrate generality. A wide variety of 2-acylarylcarbonylates
(1) were evaluated using the conditions in entry 5 of Table 1.
Gratifyingly, all the reactions afforded phthalide products 2 in
relatively good yields and excellent enantioselectivities (92-99%
ee) (Table 2). It is noteworthy that the enantioselectivity of the
reaction is generally not affected by the substitution of 1. R1 could
be a broad range of aromatic substituents, such as phenyl, naphthyl,
furanyl, or thiophenyl (entries 1-10). Substrates with either
electron-donating or electron-withdrawing groups (R2) on each
aromatic carbon were found to be efficient (entries 11-16).
Assuming an analogous reaction mechanism, the absolute config-
uration of the phthalides obtained was determined to be S by
comparison of optical rotation value11 with that reported for 2a.3h,i
To gain some information on the catalyst system, an experiment
using deuterated 2,2,6,6-tetramethylpiperidine as achiral protonating
agent was conducted. When substrate 1a was reacted under similar
reaction conditions in the combination of 10 mol % of catalyst 3,
formation of the corresponding phthalide product with high
deuterium incorporation at the 3-position (2a-d, ∼80%) was
(7) (a) Xu, M.-H.; Wang, W.; Lin, G.-Q. Org. Lett. 2000, 2, 2229. (b) Wang,
W.; Xu, M.-H.; Lei, X.-S.; Lin, G.-Q. Org. Lett. 2000, 2, 3773. (c) Xu,
M.-H.; Wang, W.; Xia, L.-J.; Lin, G.-Q. J. Org. Chem. 2001, 66, 3953.
(d) Wang, W.; Zhong, Y.-W.; Lin, G.-Q. Tetrahedron Lett. 2003, 44, 4613.
(e) Zhong, Y.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2004, 6, 3953. (f)
Zhong, Y.-W.; Isumi, K.; Xu, M.-H.; Lin, G.-Q. Org. Lett. 2004, 6, 4747.
(g) Huang, L.-L.; Xu, M.-H.; Lin, G.-Q. J. Org. Chem. 2005, 70, 529. (h)
Zhong, Y.-W.; Dong, Y.-Z.; Fang, K.; Isumi, K.; Xu, M.-H.; Lin, G.-Q.
J. Am. Chem. Soc. 2005, 127, 11956.
t
(8) No phthalide product was observed in the absence of BuOH.
(9) Easily accessible from (1S,2R)-2-amino-1,2-diphenylethanol; see: Kno¨lker,
H.-J.; Braxmeier, T. Tetrahedron Lett. 1998, 39, 9407.
(10) For reviews, see: (a) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C.
Tetrahedron: Asymmetry 2004, 15, 3653. (b) Eames, J.; Weerasooriya,
N. Tetrahedron: Asymmetry 2001, 12, 1. (c) Fehr, C. Angew. Chem., Int.
Ed. Engl. 1996, 35, 2566.
1
observed by H NMR spectral analysis11 (Scheme 3). This result
(11) For details, see Supporting Information.
strongly indicates that this proton is indeed transferred from the
ND proton of deuterated 2,2,6,6-tetramethylpiperidine. It has already
JA061114Z
9
J. AM. CHEM. SOC. VOL. 128, NO. 17, 2006 5625