2
ꢀAminoꢀ4,5ꢀdihydrothiopheneꢀ3ꢀcarbonitriles
Russ.Chem.Bull., Int.Ed., Vol. 56, No. 7, July, 2007
1435
(
both m, 1 H each, C(3)Hfur, C(4)Hfur (hereafter, fur stands for
5. V. P. Litvinov, V. V. Dotsenko, and S. G. Krivokolysko, Izv.
Akad. Nauk, Ser. Khim., 2005, 847 [Russ. Chem. Bull., Int.
Ed., 2005, 54, 864].
6. E. A.ꢀG. Bakhite, Phosphorus, Sulfur, Silicon, Relat. Elem.,
2003, 178, 929.
furyl)); 6.98 (br.s, 2 H, NH ); 7.45—7.65 (m, 4 H, C(5)Hfur,
C(3)HPh—C(5)HPh); 7.94 (br.d, 2 H, C(2)HPh, C(6)HPh
3
2
,
J = 7.1 Hz).
(
4S,5S/4R,5R)ꢀ2ꢀAminoꢀ5ꢀbenzoylꢀ4ꢀphenylꢀ4,5ꢀdihydroꢀ
thiopheneꢀ3ꢀcarbonitrile (3c). Yield 37% (method B), yellow
7. H. Maruoka, K. Yamagata, and M. Yamazaki, Liebigs Ann.
Chem., 1993, 1269; H. Maruoka, M. Yamazaki, and
Y. Tomioka, J. Heterocycl. Chem., 2004, 41, 641.
8. H. Maruoka, F. Yamagata, and M. Yamazaki, J. Heterocycl.
Chem., 2001, 38, 269.
crystals, m.p. 207—209 °C (Me CO—EtOH (1 : 1)) (cf. Ref. 15:
2
for the (4R,5R)ꢀisomer, m.p. 206—207 °C (from Me CO)).
2
Found (%): C, 70.29; H, 4.65; N, 9.11. C H N O S. Calcuꢀ
21
18
4
1
2
–
lated (%): C, 70.56; H, 4.61; N, 9.14. IR, ν/cm : 3400, 3285,
175 (NH ); 2200 (C≡N); 1675 (C=O); 1640 (δ(NH )).
3
9. A. M. Shestopalov, D. Sc. (Chem.) Thesis, IOKh AN SSSR,
Moscow, 1991 (in Russian).
2
2
1
3
H NMR, δ: 4.84 (br.d, 1 H, C(4)H, J = 3.2 Hz); 5.18 (m,
1
H, C(5)H); 6.93 (br.s, 2 H, NH ); 7.26—7.59 (m, 8 H,
10. L. A. Rodinovskaya, D. Sc. (Chem.) Thesis, IOKh RAN,
Moscow, 1994 (in Russian).
11. A. M. Shestopalov, O. P. Bogomolova, L. A. Rodinovskaya,
V. P. Litvinov, and Yu. A. Sharanin, Dokl. Akad. Nauk
SSSR, 1991, 317, 112 [Dokl. Chem., 1991, 317 (Engl.
Transl.)].
2
Ar); 7.90 (br.d, 2 H, C(2)H , C(6)H (b stands for benzoyl),
b
b
3
J = 8.0 Hz).
Xꢀray diffraction analysis of compound 3a was carried out
at ~20 °C for a single crystal (0.35×0.42×0.49 mm) on an
Enraf—Nonius CADꢀ4 automatic fourꢀcircle diffractometer
(
MoꢀKα radiation, λ = 1.71069 Å, 2θ/ω = 1.2, θmax = 25°,
12. L. A. Rodinovskaya, A. M. Shestopalov, and V. P. Litvinov,
Dokl. Akad. Nauk, 1994, 339, 214 [Dokl. Chem., 1994, 339
(Engl. Transl.)].
13. A. M. Shestopalov, O. P. Bogomolova, and V. P. Litvinov,
Synthesis, 1991, 277.
14. K. M. Dawood, Synth. Commun., 2001, 31, 1647.
15. A. V. Samet, A. M. Shestopalov, V. N. Nesterov, and V. V.
Semenov, Synthesis, 1997, 623.
16. A. V. Samet, A. M. Shestopalov, V. N. Nesterov, and V. V.
Semenov, Izv. Akad. Nauk, Ser. Khim., 1998, 127 [Russ.
Chem. Bull., 1998, 47, 127 (Engl. Transl.)].
sphere segment –17 < h < 10, 0 < k < 16, –17 < l < 16). The
total number of reflections was 6408 (5984 symmetrically indeꢀ
pendent reflections, the averaging factor Rint = 0.013). Crystals
of compound 3a are triclinic: a = 8.880(3) Å, b = 13.585(4) Å,
c = 14.805(4) Å, α = 93.56(2)°, β = 107.44(2)°, γ = 90.01(2)°,
V = 1700.3(9) Å , M = 681.7, Z = 4 (two independent molꢀ
ecules), d
group P1 (No. 2). The structure was solved by the direct method
and refined by the leastꢀsquares method in the fullꢀmatrix anisoꢀ
3
= 1.33 g cm–3, µ = 3.52 cm , F(000) = 704, space
–1
calc
–
3
5
tropic approximation with the CRYSTALS program package.
In refinement, 3382 reflections with I > 3σ(I ) were used (431 paꢀ
rameters refined, the number of reflections per parameter
was 7.8). All hydrogen atoms were located from the electron
density difference map. All hydrogen atoms were refined with
fixed coordinates and thermal parameters (only the H atoms in
the amino group were refined isotropically). The Chebyshev
weighting scheme3 with five parameters (1.04, 0.24, 0.68, –0.14,
and 0.14) was used in refinement. Final residuals were R = 0.051
and Rw = 0.053, GOF = 0.903. The residual electron densities
were 0.35 and –0.31 e Å . Absorption correction was applied
by azimuthal scanning.37 Comprehensive Xꢀray diffraction data
for compound 3a have been deposited with the Cambridge Crysꢀ
tallographic Data Center (CCDC 609934; CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK, fax: +44ꢀ1223/336ꢀ033;
eꢀmail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).
17. V. P. Litvinov, Usp. Khim., 1999, 68, 817 [Russ. Chem. Rev.,
1999, 68, 737 (Engl. Transl.)].
18. A. M. Shestopalov and K. G. Nikishin, Khim. Geterotsikl.
Soedin., 1998, 1267 [Chem. Heterocycl. Compd., 1998, 34
(Engl. Transl.)].
19. V. V. Dotsenko, Ph.D. (Chem.) Thesis, IOKh RAN, Mosꢀ
cow, 2004 (in Russian).
6
20. N. N. Mel´nikov and N. D. Sukhareva, in Reaktsii i metody
issledovaniya organicheskikh soedinenii [Reactions and
Methods of Investigations of Organic Compounds], Vol. 8,
Eds V. M. Rodionov, B. A. Kazanskii, I. L. Knunyants,
M. M. Shemyakin, and N. N. Mel´nikov, Goskhimizdat,
Moscow, 1959, p. 9 (in Russian).
21. R. H. Wiley, D. C. England, and L. C. Behr, Organic Reacꢀ
tions, Vol. 6, Ed. R. Adams, John Wiley and Sons,
New York, 1951; G. Vernin, in Thiazole and Its Derivatives.
The Chemistry of Heterocyclic Compounds, Vol. 34, P. 1,
Ed. J. V. Metzger, John Wiley and Sons, New York,
–
3
References
1
979, p. 271.
1
2
. K. Gewald, Khim. Geterotsikl. Soedin., 1976, 1299 [Chem.
Heterocycl. Compd., 1976, 12, 1077 (Engl. Transl.)].
. F. S. Babichev, Yu. A. Sharanin, V. P. Litvinov, V. K.
Promonenkov, and Yu. M. Volovenko, Vnutrimolekulyarnoe
vzaimodeistvie nitril´noi i S—Nꢀ, O—Nꢀ i S—Hꢀgrupp [Intraꢀ
molecular Interactions of Cyano and S—N, O—N, and
S—H Groups], Naukova Dumka, Kiev, 1985, 200 pp. (in
Russian).
. R. W. Sabnis, D. W. Rangnekar, and N. D. Sonawane,
J. Heterocycl. Chem., 1999, 36, 333.
. V. P. Litvinov, Izv. Akad. Nauk, Ser. Khim., 2004, 463 [Russ.
Chem. Bull., Int. Ed., 2004, 53, 487].
22. A. Matsubara, K. Sakai, H. Tanada, A. Mizuchi,
K. Horikomi, and T. Ohtsu, US Pat. 5 112 841 (1992);
http://patft.uspto.gov/netahtml/srchnum.htm.
23. S. Guenter, US Pat. 4 371 734; Chem. Abstrs, 1983, 98,
198202g.
24. S. Günter, FRG Application
2 801 794 (1979);
http://ep.espacenet.com.
25. H. K. Gakhar, A. Madan, and N. Kumar, Indian J. Chem.,
Sect. B, 1980, 19, 250.
26. A. M. Salah ElꢀDin, Sulfur Lett., 2003, 26, 35.
27. F. M. Abdelrazek, N. S. Ibrahim, Z. E.ꢀS. Kandeel, and
M. H. Elnagdi, Synthesis, 1984, 970.
3
4