Published on Web 05/26/2006
2
Tunable Columnar Mesophases Utilizing C Symmetric
Aromatic Donor-Acceptor Complexes
†
‡
†
‡
Joseph J. Reczek, Karen R. Villazor, Vincent Lynch, Timothy M. Swager, and
,
†
Brent L. Iverson*
Contribution from the Department of Chemistry and Biochemistry, The UniVersity of Texas at
Austin, Texas 78712, and the Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Abstract: Derivatives of relatively electron rich 1,5-dialkoxynaphthalene (Dan) donors and relatively electron
deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) acceptors have been exploited in the folding and
self-assembly of a variety of complex molecular systems in solution. Here, we report the use of Dan and
Ndi derivatives to direct assembly of extended columns with alternating face-centered stacked structure in
the solid state. A variety of 1:1 Dan:Ndi mixtures produced mesophases that were found to be stable over
temperature ranges extending up to 110 °C. Analysis of these mesophases indicates mixtures with soft/
plastic crystal phases and a few mixtures with the thermodynamic properties of true liquid crystals, all
composed of alternating donor-acceptor columns within. Importantly, a correspondence was found between
the clearing and crystallization points of the mesophase mixtures and the melting/clearing points of the
component Ndi and Dan units, respectively. This correspondence enables the predictable tuning of
mesophase phase transition temperatures. The study of sterically hindered derivatives led to a set of mixtures
in which a dramatic and sudden color change (deep red to yellow) was observed upon crystallization of
the mesophase due to a phase separation of the component donor and acceptor units.
Introduction
shown to promote intermolecular hetero-duplex formation in
water. As a continuation of our studies of the folding and
7
Alternating stacks of electron-rich and electron-deficient
aromatic moieties have proven to be a versatile tool for
molecular self-assembly in solution.1-4 Examples include the
catenane and rotaxane assemblies that are designed around
electron-rich and electron-deficient aromatics to produce com-
plex preorganized structures.2 We have previously reported that
oligomers containing tethered electron-rich 1,5-dialkoxynaph-
thalene (Dan) and electron-deficient 1,4,5,8-naphthalenetetra-
carboxylic diimide (Ndi) exhibit intramolecular folding in water
based upon an alternating column of aromatics stacked in a face-
assembly of molecular systems based upon complementary Dan
and Ndi stacking, we report here various mesophases created
from the 1:1 mixtures of several Dan and Ndi derivatives.
The solid state assembly of aromatic donor-acceptor com-
plexes has previously attracted much attention. For example,
in 1960, a crystalline phase was reported in a 1:1 mixture of
benzene and hexafluorobenzene in which the two molecules
,3
8
were found to be in long alternating stacks. Work with liquid
crystalline materials has shown that electron-rich mesogens can
be modified by the introduction of electron-deficient moieties.9
Equimolar mixtures have been key in developing novel films
with linear charge-transfer (CT) channels, and improving the
4
centered geometry. This folding is largely driven by desolvation
of the aromatic faces (the hydrophobic effect), directed by the
complementary geometry and electrostatics of the Dan:Ndi
complex.5 Independent Dan and Ndi oligomers have also been
1
0,11
efficiency of organic photovoltaic devices.
Recently, 1:1
,6
(
6) For reviews of aromatic interactions, see: (a) Waters, M. L. Curr. Opin.
Chem. Biol. 2002, 6, 736. (b) Hunter, C. A.; Lawson, K. R.; Perkins, J.;
Urch, C. J. J. Chem. Soc., Perkin Trans. 2, 2001, 651-669. (c) Hunter, C.
A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534.
†
Univeristy of Texas at Austin.
Massachusetts Institute of Technology.
‡
(
1) For examples, see: (a) Gabriel, G. J.; Sorey, S.; Iverson, B. L. J. Am.
Chem. Soc. 2005, 127, 2637-2640. (b) Wang, X.-Z.; Jiang, X.-K.; Li, Z.-
T. Youji Huaxue 2004, 24(7), 753-760. (c) Zhao, X.; Jia, M.-X.; Jiang,
X.-K.; Wu, L.-Z.; Li, Z.-T.; Chen, G.-J. J. Org. Chem. 2004, 69, 270-
(7) Gabriel, G. J.; Iverson, B. L. J. Am. Chem. Soc. 2002, 124, 15174-15175.
(8) Patrick, C. R.; Prosser, G. S. Nature (London) 1960, 1021.
(9) For examples, see: (a) Lee, S. J.; Chang, J. Y. Tetrahedron Lett. 2003, 44,
7493-7497. (b) Arikainen, E.; O.; Boden, N.; Bushby, R. J.; Lozman, O.
R.; Vinter, J. G.; Wood, A. Angew. Chem., Int. Ed. 2000, 39, 2333-2336.
(c) Weck, M.; Dunn, A. R.; Matsumoto, K.; Coates, G. W.; Lobkovsky, E.
B.; Grubbs, R. H. Angew. Chem., Int. Ed. 1999, 38, 2741-2745. (d)
Praefcke, K.; Singer, D. In Handbook of Liquid Crystals; Demus, D.;
Goodby, J.; Gary, G. W.; Spiess, H.-W.; Vill, V., Eds.; Wiley-VCH:
Weinheim, 1998; Vol. 2B, pp 945-967. (e) Bengs, H.; Ebert, M.; Karthaus,
O.; Kohne, B.; Praefcke, K.; Ringsdorf, H.; Wendorff, J.; W u¨ stefeld, R.
AdV. Mater.1990, 2, 141-144. (f) Ringsdorf, H.; W u¨ stefeld, R.; Zerta, M.;
Ebert, J.; Wendorff, J. Angew. Chem. 1989, 101, 934-938.
2
79. (d) Zhou, Q.-Z.; Jiang, X.-K.; Shao, X.-B.; Chen, G.-J.; Jia, M.-X.;
Li, Z.-T. Org. Lett. 2003, 5, 1955
(
2) Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng, H.-R.; Sanders, J. K.;
Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 9884-9885. (b) Ortholand, J.
Y.; Slawin, A. M. Z.; Spencer, N.; Stoddart, J. F.; Williams, D. J. Angew.
Chem., Int. Ed. Engl. 1989, 28, 1394-1395.
(
3) Raehm, L.; Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 11, 1743-
1
761. (b) Hamilton, D. G,; Davies, J. E.; Prodi, L.; Sanders, J. K. M.
Chem.sEur. J. 1998, 4, 608.
(
(
4) Lokey, R. S.; Iverson, B. L. Nature (London) 1995, 375, 303.
5) Cubberley, M. S.; Iverson, B. L. J. Am. Chem. Soc. 2001, 123, 7560-
(10) Okabe, A.; Fukushima, T.; Ariga, K.; Aida, T. Angew. Chem., Int. Ed.
2002, 41, 3414-3417.
7
563.
10.1021/ja061649s CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 7995-8002
9
7995