Solute-Solvent Interactions in Liquid Noble Gases
J. Phys. Chem., Vol. 100, No. 23, 1996 9677
2
TABLE 4: Calculated and Experimental Values of (µT
µG2)/a3 for CH2ClCH2Cl and CH2ClCH2F
-
ments as Research Assistant (aspirant) and Postdoctoral Fellow.
The N.F.W.O. is also thanked for financial help toward the
spectroscopic equipment used in this study.
CH2ClCH2Cl CH2ClCH2F
using molar volume Vm
(µT2 - µG2)/a3/D2 Å-3
References and Notes
0.2047
12.06
0.2603
15.33
(µT2 - µG2)/a3/kJ mol-1
using RHF/6-31G* electron density
(µT2 - µG2)/a3/D2 Å-3
(1) Bulanin, M. O. J. Mol. Struct. 1973, 19, 59.
(2) Freund, S. M.; Maier, N. B.; Holland, F. R.; Beattie, W. H. J. Chem.
Phys. 1978, 69, 1961.
0.1263
7.44
0.1620
9.55
(µT2 - µG2)/a3/kJ mol-1
(3) MacLaughlin, J. G.; Poliakoff, M.; Turner, J. J. J. Mol. Struct. 1982,
82, 51.
(4) Tacke, M.; Sparrer, P.; Teuber, R.; Stadter, H. J.; Schuster, F. J.
Mol. Struct. 1995, 349, 251.
(5) Sennikov, P. G. J. Phys. Chem. 1994, 98, 4973.
(6) Brock, A.; Mina-Camilde, N.; Manzanares, I. C. J. Phys. Chem.
1994, 98, 4800.
analogous linear regression was performed. The values of p
and q determined are also given in Table 3. It is clear that the
latter, within their experimental uncertainty, are identical to the
corresponding values for the noble gas solutions. This shows
that the noble gases influence the conformational equilibrium
in the same way as more common solvents.
(7) Van der Veken, B. J.; De Munck, F. R. J. Chem. Phys. 1992, 97,
3060.
(8) Bulanin, M. O. J. Mol. Struct. 1995, 347, 73.
(9) Turner, J. J.; Poliakoff, M.; Howdle, M.; Jackson, S. A.; McLaugh-
lin, J. G. Faraday Discuss. Chem. Soc. 1988, 83, 271.
(10) Herrebout, W. A.; Van der Veken, B. J.; Wang, A.; Durig, J. R. J.
Phys. Chem. 1995, 99, 578.
(11) Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.
(12) Kirkwood, J. G. J. Chem. Phys. 1934, 2, 357.
(13) Wong, M. W.; Frisch, M. J.; Wiberg, K. B. J. Am. Chem. Soc.
1991, 113, 4776.
(14) Gaussian 92, Revision E.3; Frisch, M. J.; Trucks, G. W.; Head-
Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B.
G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres,
J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox,
D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.; Gaussian,
Inc.: Pittsburgh PA, 1992.
According to relation 4, the direction cos p for each
2
3
2
conformational equilibrium must be equal to µT /aT - µG
/
aG3. This quantity can be calculated using the data in Table 2.
Because the ab initio values of the cavity radii consistently are
larger than the values obtained from the molar volume, the above
quantity was calculated using both sets of radii. The results
are given in Table 4. From a comparison with the data in Table
3 it is clear that for both molecules the experimental value of
p agrees well with the value calculated from the ab initio cavity
radii. This agreement, of course, is corroborating evidence for
the usefulness of the definition of the radii.24
Finally, using the experimental values for p and q, the
enthalpy difference ∆H° between the conformers dissolved in
liquefied argon has been predicted, by interpolating the linear
relation 6 at the values of (κ - 1)/(2κ + 1) for argon. In this
way, the ∆H° for 1,2-dichloroethane is predicted to be 3.80 (
0.23 kJ mol-1, while for 1-chloro-2-fluoroethane it is calculated
to be 0.38 ( 0.15 kJ mol-1. These enthalpy differences are
significantly below their gas phase values, which are 4.90 (
0.15 and 1.51 ( 0.09 kJ mol-1, respectively. As the enthalpy
differences in liquefied krypton and xenon differ even more
from the vapor phase values, it is clear that, at least in terms of
conformational equilibria, the above results refute the notion
that the liquefied noble gases discussed in this paper create a
pseudo gas phase1-6 in which solvent effects are negligible.
(15) Wiberg, K. B.; Keith, T. O.; Frisch, M. J.; Murcko, M. J. Phys.
Chem. 1995, 99, 9072.
(16) Abraham, R. J.; Bretschneider, E. Medium Effects on Rotational
and Conformational Equilibria. In Internal Rotation in Molecules; Orville-
Thomas, W. J., Ed.; Wiley: London, 1974.
(17) Durig, J. R.; Liu, J.; Little, T. S. J. Phys. Chem. 1991, 95, 4664.
(18) Meyer, A. Y. J. Chem. Soc., Perkin Trans. 2 1981, 1161, and
references therein.
(19) Meyer, A. Y. Chem. Soc. ReV. 1986, 15, 449, and references
therein.
(20) Meyer, A. Y. J. Comput. Chem. 1986, 7, 144, and references
therein.
(21) Pascual-Ahuir, J. L.; Silla, E.; Tomasi, J.; Bonaccorsi, R. J. Comput.
Chem. 1987, 8, 778, and references therein.
(22) Silla, E.; Tunon, I.; Pascual-Ahuir, J. L. J. Comput. Chem. 1991,
12, 1077, and references therein.
(23) Pascual-Ahuir, J. L.; Silla, E. J. Comput. Chem. 1990, 11, 1047,
and references therein.
(24) Wong, M. W.; Wiberg, K. B.; Frisch, M. J. J. Comput. Chem. 1995,
16, 385.
Conclusion
(25) Enciso, E.; Alonso, J.; Almarza, N. G.; Berjemo, F. J. J. Chem.
Phys. 1989, 90, 413, and references therein.
(26) Durig, J. R.; Godbey, S. E.; Sullivan, J. F. J. Chem. Phys. 1984,
80, 5983.
(27) Yamanouchi, K.; Sugie, M.; Takeo, K.; Matsumura, C.; Kuchitsu,
To obtain more detailed information about the weak interac-
tions between solute molecules and surrounding noble gas
(argon, krypton, and xenon) atoms, in this study the influence
of noble gas solutions on the conformational equilibrium of
some simple molecules with the general formula CH2XCH2Y
was investigated.
K. J. Phys. Chem. 1984, 88, 2315.
(28) Ogawa, Y.; Imazeki, S.; Yamaguchin, H.; Matsuura, H.; Harada,
I.; Shimanouchi, T. Bull. Chem. Soc. Jpn. 1978, 51, 748.
(29) Rasanen, M. A.; Bondybey, V. E. J. Phys. Chem. 1986, 90, 5038.
(30) Mizushima, S.; Shimanouchi, T.; Harada, I.; Abe, Y.; Takeuchi,
H. Can. J. Phys. 1975, 53, 2085, and references therein.
(31) Sverdloo, L. M.; Kovner, M. A.; Krainov, E. P. Vibrational Spectra
of Polyatomic Molecules; John Wiley & Sons: New York, 1974; p 398,
and references therein.
The experimental results obtained in this study were compared
with the theoretical predictions based on the reaction field model
of Onsager11 and Kirkwood.12 The radii of the solute molecules
to be used in this model were calculated from the molar volume
and from the RHF/6-31G* electron density. It was found that
the radii calculated from the molar volume lead to substantial
overestimation of the solvent influences. When the electron
density values for the radii are used, however, the solvent
influence calculated from the reaction field agrees very well
with the experimental results.
(32) Wiberg, K. B.; Murcko, M. A. J. Phys. Chem. 1987, 91, 3616, and
references therein.
(33) El Bermani, M. F.; Jonathan, N. J. Chem. Phys. 1968, 49, 340.
(34) Huang, J.; Hedberg, K. J. Am. Chem. Soc. 1990, 112, 2070.
(35) Knox, J. H. Molecular Thermodynamics. An Introduction to
Statistical Thermodynamics for Chemists; Wiley-Interscience: London,
1971.
(36) Foresman, J. B.; Frisch, Æ. Exploring Chemistry with Electronic
Structure Methods; Gaussian Inc.: Pittsburgh, 1993.
(37) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Defrees, D. J.; Binkley,
J. S.; Frisch, M. J.; Whiteside, R. F.; Hout, R. F.; Hehre, W. J. Int. J.
Quantum Chem., Symp. 1981, 15, 269.
In contrast with what has been claimed in the literature,1-6 it
was found that the noble gas solutions do not behave as a
“pseudo gas phase”. In fact, these solvents significantly shift
the equilibrium if the conformers have a different polarity.
(38) Mukhtarov, I. A. Opt. Spektrosk. 1966, 20, 58.
Acknowledgment. W.A.H. thanks the National Fund for
Scientific Research (NFWO, Belgium) for successive appoint-
JP953713Q