Photochemistry and Photobiology, 2013, 89 279
3. Peña, L. A. and P. E. Hoggard (2010) Photocatalysis of chloroform
decomposition by hexachloroosmate(IV). Photochem. Photobiol. 86,
467–470.
4. Peña, L. A. and P. E. Hoggard (2010) Hexachlororhodate(III) and
the photocatalytic decomposition of chloroform. J. Mol. Catal. A:
Chem. 327, 20–24.
5. Seidl, A. J., L. R. Cohen, L. A. Peña and P. E. Hoggard (2008)
Chlorochromate ion as a catalyst for the photodegradation of chloro-
form by visible light. Photochem. Photobiol. Sci. 7, 1373–1377.
6. Catoire, V., R. Lesclaux, W. F. Schneider and T. J. Wallington
(1996) Kinetics and mechanisms of the self-reactions of CCl3O2 and
CHCl2O2 radicals and their reactions with HO2. J. Phys. Chem. 100,
14356–14371.
7. Cooper, R., J. B. Cumming, S. Gordon and W. A. Mulac (1980)
The reactions of the halomethyl radicals CCl3 and CF3 with oxygen.
Radiat. Phys. Chem. 16, 169–74.
8. Hautecloque, S. (1980) On the photooxidation of gaseous trichlorom-
ethane and chlorosyl radical formation. J. Photochem. 14, 157–65.
9. Mosseri, S., Z. B. Alfassi and P. Neta (1987) Absolute rate constants
for hydrogen abstraction from hydrocarbons by the trichloromethyl-
peroxy radical. Int. J. Chem. Kinet. 19, 309–17.
10. Lesclaux, R., A. M. Dognon and F. Caralp (1987) Photooxidation of
halomethanes at low temperature: The decomposition rate of CCl3O
and CFCl2O radicals. J. Photochem. Photobiol. A. 41, 1–11.
11. Rodrigues, S. (2009) Photocatalytic remediation. In Nanoscale Mate-
rials in Chemistry, 2nd Ed. (Edited by K. J. Klabunde and R. M.
Richards), pp. 629–646.Wiley, Hoboken, NJ.
19. Du, H., R.-C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey (1998)
Photochem CAD: A computer-aided design and research tool in pho-
tochemistry. Photochem. Photobiol. 68, 141–142.
20. Lindsey, J. S. PhotochemCAD, spectra recorded by Junzhong Li and
chemCAD/html/index.html. Accessed on 29 October 2012.
21. Stone, A. and E. B. Fleischer (1968) The molecular and crystal
structure of porphyrin diacids. J. Am. Chem. Soc. 90, 2735–
2748.
22. Harvey, B. M. and P. E. Hoggard (2012) Determination of micromo-
lar concentrations of strong acids in chloroform by protonation of
tetraphenylporphyrin. Monatsh. Chem. 143, 1101–1105.
23. Hoggard, P. E. (1997) Solvent-initiated photochemistry of transition
metal complexes. Coord. Chem. Rev. 159, 235–243.
24. Billany, M. R., K. Khatib, M. Gordon and J. K. Sugden (1996)
Alcohols and ethanolamines as hydroxyl radical scavengers. Int. J.
Pharm. 137, 143–147.
25. Dolan, J. W. (1988) LC troubleshooting: More on solvents. LC-GC
6, 20–22.
26. Kitaigorodskii, A. N., A. V. Kessenikh and A. V. Bulatov (1981)
Inner-sphere coordination of chloroform with triphenylphosphine
complexes of cobalt(2 + ) and nickel(2 + ). Zh. Fiz. Khim. 55, 1200
–3.
27. Pocker, Y., K. D. Stevens and J. J. Champoux (1969) Kinetics and
mechanism of addition of acids to olefins. III. Addition of hydrogen
chloride to 2-methyl-1-butene, 2-methyl-2-butene, and isoprene in
nitromethane. J. Am. Chem. Soc. 91, 4199–205.
12. Wallington, T. J., W. F. Schneider, I. Barnes, K. H. Becker, J. Seh-
ested and O. J. Nielson (2000) Stability and infrared spectra of
mono-, di-, and trichloromethanol. Chem. Phys. Lett. 322, 97–102.
13. Brudnik, K., J. T. Jodkowski, D. Sarzynski and A. Nowek (2011)
Mechanism of the gas-phase decomposition of trifluoro-, trichloro-,
and tribromomethanols in the presence of hydrogen halides. J. Mol.
Model. 17, 2395–2409.
14. Brudnik, K., J. T. Jodkowski, A. Nowek and J. Leszczynski (2007)
Kinetics of the formation reactions of trichloro- and tribromomethyl
hypohalites and alcohols in the gas-phase: Theoretical study. Chem.
Phys. Lett. 435, 194–200.
15. Hoggard, P. E., M. Gruber and A. Vogler (2003) The photolysis of
iron(III) chloride in chloroform. Inorg. Chim. Acta. 346, 137–142.
16. Maldotti, A., G. Varani and A. Molinari (2006) Photo-assisted
chlorination of cycloalkanes with iron chloride heterogenized with
Amberlite. Photochem. Photobiol. Sci. 5, 993–995.
28. Apostolova, E. S. and A. V. Tulub (1995) Determination of CD- and
CH-bond energies in chloroform-d and fluoroform from vibrational
spectra using the morse potential. Opt Spektrosk. 78, 622–7.
29. Yamaguchi, K., K. Mori, T. Mizugaki, K. Ebitani and K. Kaneda
(2000) Creation of a monomeric Ru species on the surface of
hydroxyapatite as an efficient heterogeneous catalyst for aerobic
alcohol oxidation. J. Am. Chem. Soc. 122, 7144–7145.
30. Yamaguchi, K. and N. Mizuno (2003) Efficient heterogeneous aero-
bic oxidation of amines by a supported ruthenium catalyst. Angew.
Chem. Int. Ed. 42, 1480–1483.
31. Murahashi, S.-I., T. Nakae, H. Terai and N. Komiya (2008) Ruthe-
nium-catalyzed oxidative cyanation of tertiary amines with molecular
oxygen or hydrogen peroxide and sodium cyanide: SP3 C-H bond
activation and carbon-carbon bond formation. J. Am. Chem. Soc.
130, 11005–11012.
32. Lemma, K. and A. Bakac (2004) Kinetics and mechanism of the
17. Cohen, L. R., L. A. Peña, A. J. Seidl, K. N. Chau, B. C. Keck, P. L.
Feng and P. E. Hoggard (2009) Photocatalytic degradation of chloro-
form by bis (bipyridine)dichlororuthenium(III/II). J. Coord. Chem.
62, 1743–1753.
18. Doyle, K. J., H. Tran, M. Baldoni-Olivencia, M. Karabulut and P. E.
Hoggard (2008) Photocatalytic degradation of dichloromethane by
chlorocuprate(II) ions. Inorg. Chem. 47, 7029–7034.
oxidation of organic and inorganic substrates by a rhodium
(III) hydroperoxide. Abstracts of Papers, 227th ACS National
Meeting, Anaheim, CA, United States, March 28–April 1, 2004,
INOR-620.
33. Martens, R., C. von Sonata and J. Lind (1994) Untersuchung der Ki-
netik der Phosgenhydrolyse in wässriger Lösung durch Pulsradiolyse.
Angew. Chem. 106, 1320–1322.