Chemistry - A European Journal
10.1002/chem.201705252
COMMUNICATION
[
[
4]
5]
H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S.
Duhm, Q Li,. D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi, J. Am. Chem.
Soc. 2015, 137, 4022–4025.
L. Talirz, H. Sode, T. Dumslaff, S. Wang, J. R. Sanchez-Valencia, J. Liu,
P. Shinde, C. A. Pignedoli, L. Liang, V. Meunier, N. C. Plumb, M. Shi, X.
Feng, A. Narita, K. Müllen, R. Fasel, P. Ruffieux, ACS Nano 2017, 11,
1
380–1388.
[
[
6]
7]
Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D. G. de
Oteyza, F. R. Fischer, S. G. Louie, M. F. Crommie, Nat. Nanotechnol.
2
015, 10, 156–160.
R. R. Cloke, T. Marangoni, G. D. Nguyen, T. Joshi, D. J. Rizzo, C.
Bronner, T. Cao, S. G. Louie, M. F. Crommie, F. R. Fischer, J. Am.
Chem. Soc. 2015, 137, 8872–8875.
[
[
8]
9]
X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Räder, K. Müllen, J. Am.
Chem. Soc. 2008, 130, 4216–4217.
S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A. S. Foster, P. Spijker, E.
Meyer, Nat. Commun. 2015, 6, 8098.
Figure 3. a) Optical microscopy image of Pt traces on a SAM functionalized
[10] J. Gao, F. J. Uribe-Romo, J. D. Saathoff, H. Arslan, C. R. Crick, S. J.
Al
deposited on b) substrates functionalized with amine groups (NH
c) substrates functionalized with hydrocarbon chains (CH -SAM). d) Raman
map of cGNR deposited on a substrate functionalized with amine groups
NH -SAM).
2
O
3
substrate. Raman maps of the G peak intensity associated with 1•Zn
Hein, B. Itin, P. Clancy, W. R. Dichtel, Y.-L. Loo, ACS Nano 2016, 10,
2
-SAM) and
4
847–4856.
3
[
[
11] C. P. Sen, S. Valiyaveettil, Chem-Eur. J. 2017, 23, 1686–1693.
12] G. D. Nguyen, F. M. Toma, T. Cao, Z. Pedramrazi, C. Chen, D. J. Rizzo,
T. Joshi, C. Bronner, Y.-C. Chen, M. Favaro, S. G. Louie, F. R. Fischer,
M. F. Crommie, J. Phys. Chem. C 2016, 120, 2684–2697.
(
2
[
13] E. Carbonell-Sanromà, P. Brandimarte, R. Balog, M. Corso, S. Kawai,
A. Garcia-Lekue, S. Saito, S. Yamaguchi, E. Meyer, D. Sánchez-Portal,
J. I. Pascual, Nano Lett. 2017, 17, 50–56.
In summary, we report the deterministic bottom-up synthesis
GNR-QD-GNR heterostructure and its electronic
characterization by UV-Vis and EEM fluorescence spectroscopy.
Our synthetic strategy demonstrates that chains of
heteroditopic monomer can efficiently be fused by a single
of
a
[14] P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel,
L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X.
Feng, K. Müllen, R. Fasel, Nature 2016, 531, 489–492.
a
1
3
[15] A. Narita, X. Feng, Y. Hernandez, S. A. Jensen, M. Bonn, H. Yang, I. A.
Verzhbitskiy, C. Casiraghi, M. R. Hansen, A. H. R. Koch, G. Fytas, O.
Ivasenko, B. Li, K. S. Mali, T. Balandina, S. Mahesh, S. De Feyter, K.
Müllen, Nat. Chem. 2014, 6, 126–132.
homoditopic linker. C-NMR labeling experiments, MALDI-TOF
MS and Raman spectroscopy confirm that only one linker
molecule is incorporated at the center of the heterostructure.
UV-Vis and EEM fluorescence spectroscopy reveal a strong
electronic coupling between the cGNR segments and the central
porphyrin. Besides tuning the electronic structure of the
porphyrin core itself, metalation provides a secondary axial
coordination site that can be used to direct the spatial
localization of GNR-QD-GNR heterostructures through the
interaction with amine terminated SAMs on photo
lithographically patterned substrates.
[16] A. Narita, I. A. Verzhbitskiy, W. Frederickx, K. S. Mali, S. A. Jensen, M.
R. Hansen, M. Bonn, S. De Feyter, C. Casiraghi, X. Feng, K. Müllen,
ACS Nano 2014, 8, 11622–11630.
[
17] Y. Zhang, Y. Zhang, G. Li, J. Lu, X. Lin, S. Du, R. Berger, X. Feng, K.
Müllen, H.-J. Gao, Appl. Phys. Lett. 2014, 105, 023101.
[
18] J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Sode, L. Liang, V.
Meunier, R. Berger, R. Li, X. Feng, K. Müllen, R. Fasel, Nat.
Nanotechnol. 2014, 9, 896–900.
[
19] T. H. Vo, M. Shekhirev, D. A. Kunkel, M. D. Morton, E. Berglund, L.
Kong, P. M. Wilson, P. A. Dowben, A. Enders, A. Sinitskii, Nat.
Commun. 2014, 5, 3189.
[
[
20] T. Marangoni, D. Haberer, D. J. Rizzo, R. R. Cloke, F. R. Fischer,
Chem.-Eur. J. 2016, 22, 13037–13040.
Acknowledgements
21] K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B
Research supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Award # DE-
SC0010409 Berkeley NMR Facility is supported in part by NIH
grant SRR023679A.
1
996, 54, 17954–17961.
[22] Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 1999, 59, 9858.
[23] K. Wakabayashi, Phys. Rev. B 2001, 64, 125428.
[
[
24] V. Barone, O. Hod, G. E. Scuseria, Nano Lett. 2006, 6, 2748–2754.
25] Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 2006, 97,
2
16803.
Keywords: graphene • nanostructure • heterojunction •
[
26] Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 2006, 444, 347–349.
nanoribbon • porphyrin
[27] L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev.
Lett. 2007, 99, 186801.
[
1]
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M.
[28] P. Ruffieux, J. Cai, N. C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E.
Molinari, X. Feng, K. Müllen, C. A. Pignedoli, R. Fasel, ACS Nano 2012,
6, 6930–6935.
Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature
2
010, 466, 470–473.
[
[
2]
3]
Y.-C. Chen, D. G. de Oteyza, Z. Pedramrazi, C. Chen, F. R. Fischer, M.
F. Crommie, ACS Nano 2013, 7, 6123–6128.
[29] W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, R. K.
Kawakami, Phys. Rev. Lett. 2010, 105, 167202.
M. El Gemayel, A. Narita, L. F. Dossel, R. S. Sundaram, A. Kiersnowski,
W. Pisula, M. R. Hansen, A. C. Ferrari, E. Orgiu, X. Feng, K. Müllen, P.
Samori, Nanoscale 2014, 6, 6301–6314.
[30] W. Han, R. K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 2014,
9, 704–807.
[31] G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-
Incze, C. Hwang, L. P. Biro, L. Tapaszto, Nature 2014, 514, 608–611.
This article is protected by copyright. All rights reserved.