Scheme 1
discovered that humans possess genes encoding the 12(R)-
and chiral 12-HETEs have been described, none being of
the modern catalytic enantioselective type.14
LO11 as well as genes for the longer known 12(S)-LO
enzymes.4d,12 Interestingly, 12(R)-HETE (1) appears to be
an order of magnitude more proinflammatory than 12(S)-
HETE (2).10
The pathway of synthesis of 1 is summarized in Scheme
1. The allylic bromide 3, synthesized in 65% yield by
coupling of 1 equiv of 1-heptynylmagnesium bromide with
(E)-1,4-dibromo-2-butene in the presence of 10 mol % of
CuBr in THF at 0 f 50 °C15 was converted to (E)-â,γ-
unsaturated ester 4 by Pd(0)-catalyzed carbonylation in
methanol.16 Sharpless asymmetric dihydroxylation of 4 using
the dihydroquinidine-based biscinchona catalyst/reagent AD-
mix-â (Aldrich) occurred with in situ lactonization to give
the chiral â-hydroxy lactone 5, [R]2D2 +45.4 (c 0.8, Me2-
CO), of 95% ee17 as determined by HPLC analysis using a
Whelk O-1 column with 1:9 isopropyl alcohol-hexane as
eluent (retention times: 21.7 min for S,S-enantiomer of 5 and
26.1 min for 5). Selective Lindlar reduction of the triple bond
of 5 gave the corresponding Z-olefin, which was converted
to the methanesulfonate and reduced with DIBAL-H in
toluene at -78 °C to form lactol mesylate 6. Reaction of 6
with the ylide (Z)-Ph3PdCHCH2CHdCH(CH2)3COOMe
(8)18 in 1:0.3 THF-HMPA at -25 °C for 1 h produced the
methyl ester (7) of 12(R)-HETE, [R]2D2 -14.8 (c 0.9,
acetone), which was spectroscopically identical with an
authentic sample. Saponification of the methyl ester 7 with
1:1 1 N LiOH(aq)-THF affords 12(R)-HETE (1).
The growing importance of 12(S)- and 12(R)-HETE in
biological regulation and disease underscores the need for
adequate supplies of these enantiomeric substances for
fundamental studies. This paper reports an efficient and short
synthetic route to the enantiomers 1 and 2 using modern
catalytic asymmetric methodology. The route is illustrated
specifically for the 12(R)-HETE (1) but clearly can be applied
equally well to the enantiomer 2. Since the original synthesis
of 12(S)-HETE,13 a number of other syntheses of racemic
(12) (a) Izumi, T.; Hoshiko, S.; Rådmark, O.; Samuelsson, B. Proc. Natl.
Acad. Sci. U.S.A. 1990, 87, 7477. (b) Funk, C. D.; Furci, L.; Fitzgerald, G.
A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 5638.
(13) Corey, E. J.; Niwa, H.; Knolle, J. J. Am. Chem. Soc. 1978, 100,
1942.
(14) (a) Corey, E. J.; Marfat, A.; Falck, J. R.; Albright, J. O. J. Am.
Chem. Soc. 1980, 102, 1433. (b) Corey, E. J.; Kyler, K.; Raju, N.
Tetrahedron Lett. 1984, 25, 5115. (c) Russell, S. W.; Pabon, H. J. J. J.
Chem. Soc., Perkin Trans. 1 1982, 545. (d) Just, G.; Wang, Z. Y.
Tetrahedron Lett. 1985, 26, 2993. (e) Just, G.; Wang, Z. Y. J. Org. Chem.
1986, 51, 4796. (f) Yadagiri, P.; Lumin, S.; Mosset, P.; Capdevila, J.; Falck,
J. R. Tetrahedron Lett. 1986, 27, 6039. (g) Shimazaki, T.; Kobayashi, Y.;
Sato, F. Chem. Lett. 1988, 1785. (h) Nagata, R.; Kawakami, M.; Matsuura,
T.; Saito, I. Tetrahedron Lett. 1989, 30, 2817. (i) Nicolaou, K. C.; Ramphal,
J. Y.; Abe, Y. Synthesis 1989, 898. (j) Mosset, P.; Pointeau, P.; Aubert, F.;
Lellouche, J. P.; Beaucourt, J. P.; Gre´e, R. Bull. Soc. Chim. Fr. 1990, 127,
298. (k) Lumin, S.; Falck, J. R.; Schwartzman, M. L. Tetrahedron Lett.
1991, 32, 2315.
(15) Nicolaou, K. C.; Ladduwahetty, T.; Elisseou, E. M. J. Chem. Soc.,
Chem. Commun. 1985, 1580.
(16) Kiji, J.; Okano, T.; Higashimae, Y.; Fukui, Y. Bull. Chem. Soc.
Jpn. 1996, 69, 1029. Increased pressure of CO minimizes methanolysis of
allylic bromide 3 to the corresponding methyl ether.
(17) (a) Sharpless, K. B.; Amberg, W.; Bennani, Y.; Crispino, G. A.;
Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu,
D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768. (b) Wang, Z.; Zhang, X.;
Sharpless, K. B.; Sinha, S. C.; Sinha-Bagchi, A.; Keinan, E. Tetrahedron
Lett. 1992, 33, 6407.
(18) Ylide 8 was prepared from the corresponding phosphonium salt by
reaction with sodium hexamethyldisilazide in THF at -25 °C, see: (a)
Zamboni, R.; Milette, S.; Rokach, J. Tetrahedron Lett. 1983, 24, 4899. (b)
Sandri, J.; Viala, J. J. Org. Chem. 1995, 60, 6627.
Modification of the synthesis shown in Scheme 1 by
replacing AD-mix-â by AD-mix-R in the synthesis allows
formation of ent-5 and therefore 12(S)-HETE (2).
The synthetic process described herein thus allows the
preparation of both 12(R)- and 12(S)-HETE from the
common building blocks 4 and 8 in a remarkably simple
and effective way.
Acknowledgment. This research was assisted by a grant
from the National Science Foundation. We are very grateful
to Dr. Sheldon Crane for experimental assistance.
OL0062392
2544
Org. Lett., Vol. 2, No. 16, 2000