Journal of the American Chemical Society
Page 6 of 8
Experimental details and crystallographic data. This material
is available free of charge via the Internet at
catalyst I effectively prevented the occurrence of this
isomerization process and afford the Z-alkene products.
The high chemoselectivity for the E-selective semi-
reduction is caused by the much faster β-hydride elimina-
tion of the alkyl cobalt intermediate F compared with its
protonation by methanol.31
1
2
3
4
AUTHOR INFORMATION
5
Corresponding Author
6
7
8
9
Author Contributions
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
†These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We are grateful for the financial supports of National Pro-
gram for Thousand Young Talents of China. We also thank
Prof. Lei Jiao, Prof. Bi-Jie Li, Prof. Ming-Tian Zhang, Prof.
Zheng Yin and Prof. Jin-Pei Cheng all form CBMS, for the
helpful discussions as well as the analytic center of CBMS.
REFERENCES
(1) de Vries, J. G.; Elsevier, C. J.; Editors Handbook of
Homogeneous Hydrogenation; WILEYꢀVCH, 2007.
(2) (a) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687; (b) Morris, R.
H. Acc. Chem. Res. 2015, 48, 1494; (c) Zell, T.; Milstein, D. Acc.
Chem. Res. 2015, 48, 1979.
(3) (a) Yu, R. P.; Darmon, J. M.; Milsmann, C.; Margulieux, G. W.;
Stieber, S. C. E.; DeBeer, S.; Chirik, P. J. J. Am. Chem. Soc. 2013,
135, 13168; (b) Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S.
W.; Tudge, M. T.; Chirik, P. J. Science 2013, 342, 1076; (c)
Gärtner, D.; Welther, A.; Rad, B. R.; Wolf, R.; Jacobi von Wangelin,
A. Angew. Chem. Int. Ed. 2014, 53, 3722; (d) Srimani, D.;
Mukherjee, A.; Goldberg, A. F. G.; Leitus, G.; DiskinꢀPosner, Y.;
Shimon, L. J. W.; Ben David, Y.; Milstein, D. Angew. Chem. Int. Ed.
2015, 54, 12357; (e) Friedfeld, M. R.; Shevlin, M.; Margulieux, G.
W.; Campeau, L.ꢀC.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138,
3314.
(4) (a) Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem. Int. Ed.
2012, 51, 12102; (b) Rösler, S.; Obenauf, J.; Kempe, R. J. Am.
Chem. Soc. 2015, 137, 7998; (c) Korstanje, T. J.; Ivar van der
Vlugt, J.; Elsevier, C. J.; de Bruin, B. Science 2015, 350, 298.
(5) Xu, R.; Chakraborty, S.; Yuan, H.; Jones, W. D. ACS Catalysis
2015, 5, 6350.
Figure 2. Plausible Reaction Mechanism.
CONCLUSIONS
(6) Mukherjee, A.; Srimani, D.; Chakraborty, S.; BenꢀDavid, Y.;
Milstein, D. J. Am. Chem. Soc. 2015, 137, 8888.
(7) (a) Zhang, G.; Hanson, S. K. Chem. Commun. 2013, 49, 10151;
(b) King, S. M.; Ma, X.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136,
6884; (c) Pagano, J. K.; Stelmach, J. P. W.; Waterman, R. Dalton
Trans. 2015, 44, 12074.
We have demonstrated a ligand controlled stereodiver-
gent transfer hydrogenation of alkynes to E-and Z-alkenes
using cobalt catalysts. Ammonia borane was used as a
bench stable and practical hydrogen source17 as well as a
mild reagent for the activation of a series of readily acces-
sible cobalt dichloride pincer catalysts. The current sys-
tem operates under mild conditions and allows for the
semi-reduction of various internal and terminal alkynes
with good yields and selectivity in the absence of any sen-
sitive additives. Notably, this Co-catalyzed reaction pro-
ceeds with high efficiency, and up to 460 turnovers has
been realized. We believe this strategy for the selectivity
control via rational catalyst design would provide useful
insights for the development of other base metal catalysis
processes.
(8) Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89.
(9) (a) Gieshoff, T. N.; Welther, A.; Kessler, M. T.; Prechtl, M. H. G.;
Jacobi von Wangelin, A. Chem. Commun. 2014, 50, 2261; (b)
Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa,
K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452.
(10) Liu, Y.; Hu, L.; Chen, H.; Du, H. Chem. Eur. J. 2015, 21, 3495.
(11) (a) Radkowski, K.; Sundararaju, B.; Fürstner, A. Angew.
Chem. Int. Ed. 2013, 52, 355; (b) Leutzsch, M.; Wolf, L. M.; Gupta,
P.; Fuchs, M.; Thiel, W.; Farès, C.; Fürstner, A. Angew. Chem. Int.
Ed. 2015, 54, 12431.
(12) Karunananda, M. K.; Mankad, N. P. J. Am. Chem. Soc. 2015,
137, 14598.
(13) Tani, K.; Iseki, A.; Yamagata, T. Chem. Commun. 1999, 1821.
(14) Shen, R.; Chen, T.; Zhao, Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang,
X.; Goto, M.; Han, L.ꢀB. J. Am. Chem. Soc. 2011, 133, 17037.
(15) Srimani, D.; DiskinꢀPosner, Y.; BenꢀDavid, Y.; Milstein, D.
Angew. Chem. Int. Ed. 2013, 52, 14131.
ASSOCIATED CONTENT
Supporting Information.
(16) Richmond, E.; Moran, J. J. Org. Chem. 2015, 80, 6922.
ACS Paragon Plus Environment