Macromolecules, Vol. 38, No. 6, 2005
Communications to the Editor 2045
neutral segment and a positively charged segment, such
as poly(ethylene glycol)-block-poly(L-lysine).42,43 It may
also be used as a temperature-sensitive material, which
may undergo heat-induced micellization in water.44 Both
types of micelles will be tools as delivery systems, taking
advantage of the biological properties of HA. Conversely,
they will also offer new means to explore the biological
properties of HA.
Acknowledgment. This work was supported by a
strategic grant of the Natural Sciences and Engineering
Research Council of Canada (to F.M.W.) and by the
Special Coordination Funds for Science and Technology
from the Ministry of Education, Culture, Sports, Science
and Technology of Japan (MEXT) (to K.K.).
Supporting Information Available: Detailed synthetic
procedures and spectral data for all polymers and for the
initiator; synthetic scheme for the preparation of NH2-PEtOz.
This material is available free of charge via the Internet at
References and Notes
(1) (a) Nieuw Amerongen, A. V.; Bolscher, J. G.; Bloemena, E.;
Veerman, E. C. Biol. Chem. 1998, 379, 1. (b) Roussel, P.;
Delmotte, P. Curr. Org. Chem. 2004, 8, 413. (c) Patel, M.
M.; Smart, J. D.; Nevell, T. G.; Ewen, R. J.; Eaton, P. J.;
Tsibouklis, J. Biomacromolecules 2003, 4, 1184. (d) Chick-
ering, D. E.; Mathiowitz, E. J. Controlled Release 1995, 34,
251.
Figure 2. 1H NMR spectra of HA (a), NH2-PEtOz (b), and
HA-b-PEtOz (c) in D2O at room temperature.
(2) Tsutsumiuchi, K.; Aoi, K.; Okada, M. Macromolecules 1997,
30, 4013.
(3) Tsutsumiuchi, K.; Aoi, K.; Okada, M. Macromol. Rapid
Commun. 1995, 16, 749.
(4) Asayama, S.; Nogawa, M.; Takei, Y.; Akaike, T.; Maruyama,
A. Bioconjugate Chem. 1998, 9, 476.
(5) Balazs, E. A.; Laurent, T. C.; Jeanloz, R. W. Biochem. J.
1986, 235, 903.
(6) (a) Fraser, J. R. E.; Laurent, T. C.; Laurent, U. B. G. J.
Intern. Med. 1997, 242, 27. (b) Banerjee, S. D.; Toole, B. P.
J. Cell Biol. 1992, 119, 643.
(7) (a) Oksala, O.; Salo, T.; Tammi, R.; Hakkinen, L.; Jalkanen,
M.; Inki, P.; Larjava, H. J. Histochem. Cytochem. 1995, 43,
125. (b) LeBoeuf, R. D.; Raja, R. H.; Fuller, G. M.; Weigel,
P. H. J. Biol. Chem. 1986, 261, 12586. (c) Miyauchi, S.;
Morita, M.; Kuramoto, K.; Horie, K. Curr. Eye Res. 1996,
15, 131.
(8) (a) Entwistle, J.; Hall, C. L.; Turley, E. A. J. Cell Biochem.
1996, 61, 569. (b) Turley, E. A. Cancer Metastasis. Rev. 1984,
3, 325.
(9) Toole, B. P. J. Intern. Med. 1997, 242, 35.
(10) Drobnik, J. Adv. Drug Deliv. Rev. 1991, 7, 295.
(11) Vercruysse, K. P.; Prestwich, G. D. Crit. Rev. Ther. Drug
Carrier Syst. 1998, 15, 513.
(12) Cho, K. Y.; Chung, T. W.; Kim, B. C.; Kim, M. K.; Lee, J.
H.; Wee, W. R.; Cho, C. S. Int. J. Pharm. 2003, 260, 83.
(13) Pouyani, T.; Prestwich, G. D. Bioconjugate Chem. 1994, 5,
370.
(14) Prestwich, G. D.; Marecek, D. M.; Marecek, J. F.; Ver-
cruysse, K. P.; Ziebell, M. R. J. Controlled Release 1998, 53,
93.
(15) Saettone, M. F.; Giannaccini, B.; Chetoni, P.; Torracca, M.
T.; Monti, D. Int. J. Pharm. 1991, 72, 131.
(16) Morimoto, K.; Yamaguchi, H.; Iwakura, Y.; Morisaka, K.;
Ohashi, Y.; Nakai, Y. Pharm. Res. 1991, 8, 471.
(17) Thierry, B.; Winnik, F. M.; Merhi, Y.; Silver, J.; Tabrizian,
M. Biomacromolecules 2003, 4, 1564.
(18) Thierry, B.; Winnik, F. M.; Mehri, Y.; Tabrizian, M. J. Am.
Chem. Soc. 2003, 125, 7494.
(19) Waschinski, C. J.; Tiller, J. C. Biomacromolecules 2005, 6,
235.
(20) Kobayashi, S.; Kaku, M.; Saegusa, T. Macromolecules 1988,
21, 1921.
(21) Kobayashi, S.; Masuda, E.; Shoda, S.; Shimano, Y. Macro-
molecules 1989, 22, 2878.
(22) Jordan, R.; Martin, K.; Rader, H. J.; Unger, K. K. Macro-
molecules 2001, 34, 8858.
with NH2-PEtOz was performed at 40 °C in an aqueous
sodium borate buffer (pH 8.5) for a period of 8 days
in the presence of NaBH3CN (Scheme 1). Purification
of the reaction product by extensive dialysis, first
against a 0.5 M NaCl aqueous solution and second
against deionized water to remove unreacted HA and
NH2-PEtOz, gave, after lyophilization, HA-b-PEtOz in
49% yield and 90% purity. The success of the coupling
reaction and of the purification procedure was ascer-
tained by GPC analysis. The GPC trace of the coupling
product (Figure 1) presents only one peak, of shorter
elution time than that of the starting HA sample.39
The GPC-derived weight-average molecular weight of
HA-b-PEtOz is 10 200 g/mol (Mw/Mn ) 1.31), a value
slightly higher than the Mw expected on the basis of
the Mw of the individual components (HA and NH2-
PEtOz). The purity of the diblock copolymer was deter-
mined by analysis of its 1H NMR spectrum (Figure 2c),
which presents signals characteristic of HA and of
PEtOz (see spectra of HA and PEtOz in Figure 2, a and
b, respectively).40 The molar ratio of HA disaccharide
units to PEtOz monomeric units was calculated to be
1:9.9 taking the ratio of the area of the signal at δ 1.99
ppm, attributed to the HA N-acetyl methyl protons to
that of the signal at δ 1.03 ppm, due to the PEtOz side
chain methyl protons. The calculated ratio of the two
blocks based on the number-average molecule weight
of HA and PEtOz is 1:10.5.
In summary, we report here the preparation of new
biomimetic diblock copolymers consisting of two hydro-
philic units: a nonionic block (PEtOz) and an anionic
block (HA). Preliminary experiments indicate that this
anionic copolymer forms colloidally stable particles (Rh
∼ 130 nm) with the cationic drug diminazene. It is
expected to form complexes with other positively charged
entities, such as inorganic nanoparticles, enzymes,41
polycations, and diblock copolymers consisting of a