Communication
ChemComm
Project for Jiangsu Scientific and Technological Innovation Team,
and the MOE & SAFEA for the 111 Project (B13025).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) J. Navarro-Sanchez, A. I. Argente-Garcia, Y. Moliner-Martinez,
D. Roca-Sanjuan, D. Antypov, P. Campins-Falco, M. J. Rosseinsky
and C. Marti-Gastaldo, J. Am. Chem. Soc., 2017, 139, 4294–4297;
(b) K. Wu, K. Li, Y. J. Hou, M. Pan, L. Y. Zhang, L. Chen and C. Y. Su,
Nat. Commun., 2016, 7, 10487; (c) T. Liu, Y. Liu, W. Xuan and Y. Cui,
Angew. Chem., Int. Ed., 2010, 49, 4121–4124.
Fig. 5 Variable-temperature solid-state magnetic susceptibility measure-
ments for (a) cage 1 and [C60C1], (b) cage 2 and [C60C2].
2 (a) S. Loffler, A. Wuttke, B. Zhang, J. J. Holstein, R. A. Mata and
G. H. Clever, Chem. Commun., 2017, 53, 11933–11936; (b) X. Jing,
Y. Yang, C. He, Z. Chang, J. N. H. Reek and C. Duan, Angew. Chem.,
Int. Ed., 2017, 56, 11759–11763; (c) A. M. Castilla, T. K. Ronson and
J. R. Nitschke, J. Am. Chem. Soc., 2016, 138, 2342–2351.
3 (a) L. Zhao, X. Jing, X. Li, X. Guo, L. Zeng, C. He and C. Duan, Coord.
Chem. Rev., 2017, DOI: 10.1016/j.ccr.2017.11.005; (b) C. Tan, J. Jiao,
Z. Li, Y. Liu, X. Han and Y. Cui, Angew. Chem., Int. Ed., 2018, 57,
2085–2090; (c) V. Marti-Centelles, A. L. Lawrence and P. J. Lusby,
J. Am. Chem. Soc., 2018, 140, 2862–2868.
4 (a) L. Zhang, L. Xiang, C. Hang, W. Liu, W. Huang and Y. Pan,
Angew. Chem., Int. Ed., 2017, 56, 7787–7791; (b) J. S. Wright, A. J.
Metherell, W. M. Cullen, J. R. Piper, R. Dawson and M. D. Ward,
Chem. Commun., 2017, 53, 4398–4401.
5 (a) D. Yang, J. Zhao, L. Yu, X. Lin, W. Zhang, H. Ma, A. Gogoll,
Z. Zhang, Y. Wang, X. J. Yang and B. Wu, J. Am. Chem. Soc., 2017,
139, 5946–5951; (b) P. Mal, B. Breiner, K. Rissanen and
J. R. Nitschke, Science, 2009, 324, 1697–1699.
value of 9.95 cm3 K molÀ1 for cage 1 and 8.83 cm3 K molÀ1 for
cage 2 at 400 K. The spin-transition temperature T1/2 was
estimated to be 344 K for cage 1 and 328 K for cage 2. The
1H chemical shift values of the signals attributed to cages 1 and
2 were also observed to increase with temperature (Fig. S59 and
S60, ESI†). The imine peak showed the largest increase due to
its proximity to the metal center. This shift was consistent with
an increase in the high-spin population of iron(II) ions.
Spin-crossover behaviors were also observed in the host–guest
complexes [C60C1] and [C60C2]. However, there are two major
differences: firstly, the inclusion of the C60 guest resulted in
stabilization of the high-spin state of iron(II) centers, since T1/2
was lowered by approximately 32 K for [C60C1] (estimated T1/2
=
6 (a) W. Wang, Y. X. Wang and H. B. Yang, Chem. Soc. Rev., 2016, 45,
2656–2693; (b) L. Yang, X. Jing, B. An, C. He, Y. Yang and C. Duan,
Chem. Sci., 2018, 9, 1050–1057; (c) N. Struch, C. Bannwarth, T. K.
Ronson, Y. Lorenz, B. Mienert, N. Wagner, M. Engeser, E. Bill,
R. Puttreddy, K. Rissanen, J. Beck, S. Grimme, J. R. Nitschke and
A. Lu¨tzen, Angew. Chem., Int. Ed., 2017, 56, 4930–4935.
7 (a) S. Zarra, D. M. Wood, D. A. Roberts and J. R. Nitschke, Chem. Soc.
Rev., 2015, 44, 419–432; (b) N. Ahmad, H. A. Younus, A. H. Chughtai
and F. Verpoort, Chem. Soc. Rev., 2015, 44, 9–25.
8 (a) W. Q. Xu, Y. Z. Fan, H. P. Wang, J. Teng, Y. H. Li, C. X. Chen,
D. Fenske, J. J. Jiang and C. Y. Su, Chem. – Eur. J., 2017, 23,
3542–3547; (b) J. Guo, Y. W. Xu, K. Li, L. M. Xiao, S. Chen, K. Wu,
X. D. Chen, Y. Z. Fan, J. M. Liu and C. Y. Su, Angew. Chem., Int. Ed.,
2017, 56, 3852–3856; (c) D. Luo, X. P. Zhou and D. Li, Angew. Chem.,
Int. Ed., 2015, 54, 6190–6195.
9 (a) W. Brenner, T. K. Ronson and J. R. Nitschke, J. Am. Chem. Soc.,
2016, 139, 75–78; (b) T. K. Ronson, A. B. League, L. Gagliardi,
C. J. Cramer and J. R. Nitschke, J. Am. Chem. Soc., 2014, 136,
15615–15624.
312 K) and 22 K for [C60C2] (estimated T1/2 = 306 K). This may be
due to the SCO-active hosts accommodating the fullerene guest by
changing their geometry to a greater extent than for the empty
hosts, leading to an increase in the high-spin population at the
same temperatures.16 Secondly, as the temperature increased from
2 K to 100 K, the wMT showed an abrupt increase up to a maximum
value of 3.30 cm3 K molÀ1 at 52 K for cage 1 and 4.16 cm3 K molÀ1
at 49 K for cage 2, then decreased to 2.92 cm3 K molÀ1 at 80 K for
cage 1 and 3.57 cm3 K molÀ1 for cage 2 at 89 K. The obvious
anomaly in the wMT plots at low temperature may be due to the
ferromagnetic transitions resulting from the donor–accepter inter-
actions between the C60 guest and Fe(II) ions, and the exchange
interaction between p-electrons on C60 guest molecules and
O–benzene (or O–naphthalene) aromatic ligands.17
In conclusion, two iron(II) tetrahedral metal–organic cages 10 (a) C. Garcia-Simon, M. Garcia-Borras, L. Gomez, T. Parella, S. Osuna,
J. Juanhuix, I. Imaz, D. Maspoch, M. Costas and X. Ribas, Nat.
Commun., 2014, 5, 5557; (b) Y. Inokuma, T. Arai and M. Fujita, Nat.
Chem., 2010, 2, 780–783.
with cube-like cavities have been constructed. The two types of
iron(II) coordination cages are both capable of selectively
encapsulating C60 fullerene guests and showing solid state 11 S. Brooker, Chem. Soc. Rev., 2015, 44, 2880–2892.
12 T. K. Ronson, W. Meng and J. R. Nitschke, J. Am. Chem. Soc., 2017,
spin-crossover behaviors. Varying the nature of O–benzene or
O–naphthalene moieties and changing the alkyl chain linking
139, 9698–9707.
13 T. K. Ronson, B. S. Pilgrim and J. R. Nitschke, J. Am. Chem. Soc.,
length may further affect the recognition and selectivity toward
various fullerene guests. Moreover, these kinds of metal–organic
cages are homochiral, and efforts are currently being pursued for
chiral guest discrimination and separation.
This work was supported by the National Natural Science
Foundation of China (21771089), the Fundamental Research Funds
for the Central Universities (JUSRP51725B and JUSRP51513), the
2016, 138, 10417–10420.
14 K. Rissanen, Chem. Soc. Rev., 2017, 46, 2638–2648.
15 S. Mecozzi and J. Rebek, Chem. – Eur. J., 1998, 4, 1016–1022.
16 R. A. Bilbeisi, S. Zarra, H. L. Feltham, G. N. Jameson, J. K. Clegg,
S. Brooker and J. R. Nitschke, Chem. – Eur. J., 2013, 19, 8058–8062.
17 (a) D. Mihailovic, D. Arcon, P. Venturini, R. Blinc, A. Omerzu and
P. Cevc, Science, 1995, 268, 400–402; (b) K. Tanaka, T. Sato,
K. Yoshizawa, K. Okahara, T. Yamabe and M. Tokumoto, Chem.
Phys. Lett., 1995, 237, 123–126.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12646--12649 | 12649