10.1002/anie.201800435
Angewandte Chemie International Edition
COMMUNICATION
H. H. Hermkens, L. A. J. M. Sliedregt, H. W. Scheeren, F. P. J. T. Rutjes
Tetrahedron 2009, 65, 5393.
followed by the C–C bond formation (top, Figure 2). The energetic
profile of both steps is presented in Figure 2. In the first stage, a
transition state consists of the direct migration of the proton from
the ketimine 1b to the catalyst 3a. The relative position of the
nitroalkene 2a depends on the relative position of the proton,
because the intrinsic dipole of the nitro group points towards the
positive charge on the proton and assists the proton-migration.
Figure 2 also shows how the coordination by means of hydrogen
bonds is fundamental to the appropriate orientation of the
ketimine 1b with the catalyst 3a, enabling the proton transfer to
be carried out. The second stage due to the subtle movements
involved in the geometric reorganization has a very complex
energy profile and therefore only a scan of the C–C bond distance
is presented (see details of the complete exploration of the
potential energy surface in the S.I.). It implies a reorientation of all
the three benzene rings located in the catalyst, in the electrophile,
and in the nucleophile, for the new conformation that involves the
coordinated rotations of the different dihedral angles. The
intramolecular attack of the nitronate intermediate generated on
the ketimine is hindered because the orientation of the phenyl ring
of the ketimine is blocking this addition, without the formation of
the pyrrolidine core by a formal 1,3-dipolar-cycloaddition. In this
step, the coordination of the nucleophile 1b to the catalyst 3a is
also a crucial point in the stereochemistry of the products.[19]
Overall, the rate limiting step is the proton transfer with a larger
energy barrier than the C-C bond formation (see Figure 2).
[4]
[5]
[6]
a) T. Hashimoto, K. Maruoka Chem. Rev. 2007, 107, 5656; b) M. J.
O’Donnell Acc. Chem. Res. 2004, 37, 506; c) K. Maruoka, T. Ooi Chem.
Rev. 2003, 103, 3013; d) M. J. O’Donnell Aldrichimica Acta 2001, 34, 3.
a) M. J. O'Donnell, F. Delgado, R. S. Pottorf Tetrahedron 1999, 55, 6347;
b) M. J. O'Donnell, W. D. Bennett, S. Wu J. Am. Chem. Soc. 1989, 111,
2353.
a) T. Kano, T. Kumano, R. Sakamoto, K. Maruoka Org. Biomol. Chem.
2013, 11, 271; b) T. Ooi, D. Kato, K. Inamura, K. Ohmatsu, K. Maruoka
Org. Lett. 2007, 9, 3945; c) K. Maruoka, T. Ooi, T. Kano Chem. Commun.
2007, 1487.
[7]
[8]
a) L. Belding, P. Stoyanov, T. Dudding J. Org. Chem. 2016, 81, 553; b)
J. S. Bandar, T. H. Lambert J. Am. Chem. Soc. 2012, 134, 5552; c) W.
He, Q. Wang, Q. Wang, B. Zhang, X. Sun, S. Zhang Synlett 2009, 1311.
Organometallic examples have been described in the literature using
copper and silver catalytic systems. See: a) K. Imae, T. Konno, K. Ogata,
S. –I. Fukuzawa Org. Lett. 2012, 14, 4410; b) H. Y. Kim, J. –Y. Li, S. Kim,
K. Oh J. Am. Chem. Soc. 2011, 133, 20750; c) E. Conde, I. Rivilla, A.
Larumbe, F. P. Cossío J. Org. Chem. 2015, 80, 11755.
[9]
Only two organocatalytic reactions have been described in the addition
of azomethine ylides to nitroalkenes with low enantioselecivities and
moderate reactivity. See: a) J. Xie, K. Yoshida, K. Takasu, Y. Takemoto
Tetrahedron Lett. 2008, 49, 6910; b) M. –X. Xue, X. –M. Zhang, L. –Z.
Gong Synlett 2008, 691.
[10] a) M. Frias, R. Mas-Ballesté, S. Arias, C. Alvarado, J. Alemán J. Am.
Chem. Soc. 2017, 139, 672; b) C. Jarava-Barrera, F. Esteban, C.
Navarro-Ranninger, A. Parra, J. Alemán, Chem. Commun. 2013, 49,
2001; c) V. Marcos, J. Alemán, J. L. García Ruano, F. Marini, M. Tiecco,
Org. Lett. 2011, 13, 3052; d) A. Parra, R. Alfaro, L. Marzo, A. Moreno-
Carrasco, J. L. García Ruano, J. Alemán Chem. Commun 2012, 48, 9759.
[11] T. Inokuma, Y. Hoashi, Y. Takemoto J. Am. Chem. Soc. 2006, 128, 9413.
[12] G. Talavera, E. Reyes, J. L. Vicario, L. Carrillo, Angew. Chem. Int. Ed.
2012, 51, 4104.
In summary, an organocatalytic strategy for the synthesis of
α,γ-diamino acid derivatives in high enantiomeric excess is
presented. The key to the success is the intramolecular activation
via hydrogen bonding through an ortho hydroxy group, which
allows the Michael addition to take place in the presence of
glycine ylides bearing only one activating group.
[13] E. Badiola, B. Fiser, E. Gómez-Bengoa, A. Mielgo, I. Olaizola, I.
Urruzuno, J. M. García, J. M. Odriozola, J. Razkin, M. Oiarbide and C.
Palomo J. Am. Chem. Soc. 2014, 136, 17869.
[14] C. K. Jung, M. J. Krische J. Am. Chem. Soc. 2006, 128, 17051.
[15] a) S. Park, H. J. Kim Chem. Commun. 2010, 46, 9197; b) N. N. Chipanina,
L. P. Oznobikhina, T. N. Aksamentova, A. R. Romanov, A. Yu. Rulev,
Tetrahedron 2014, 70, 1207; c) D. R. Li, A. Murugan, J. R. Falck J. Am.
Chem. Soc. 2008, 130, 46; d) Z. Wang, X. Bi, P. Liao, R. Zhang, Y. Liang,
D. Dong Chem. Commun. 2012, 48, 7076.
Acknowledgements
Spanish Government (CTQ2015-64561-R, CTQ2016-
76061-P, MDM-2014-0377), ERC (contract number: 647550) and
CCC-UAM (computing time) are acknowledged. A. G and F. E.
thank to MINECO for Ph. D. fellowships (FPI) and A. M. S. to CAM
for a postdoctoral contract (2016-T2/IND-1660).
[17] M.J. Frisch, et al. Gaussian 09, revision B.01; Gaussian, Inc.: Wallingford,
CT, 2009.
[18] We considered also the Takemoto's coordination but it was found to have
larger energy thermodynamic and kinetics barriers, (a) T. Okino, Y.
Hoashi, T. Furukawa, X. Xu, Y. Takemoto, J. Am. Chem. Soc. 2006, 128,
13151) than the Pápai-Zhong’s model: b) A. Hamza, G. Schubert, T.
Sóos, I. Pápai, J. Am. Chem. Soc. 2006, 128, 13151; c) B. Tan, Y. Lu, X.
Zeng, P.J. Chua, G. Zhong. G. Org. Lett. 2010, 12, 2682.
Keywords: -amino acids • bifunctional catalysis • hydrogen
bond activation • chemical auxiliary
[1]
As catalyst: a) H. Xie, T. Hayes, N. Gathergood Catalysis of Reactions
by Amino Acids in Amino Acids, Peptides and Proteins in Organic
Chemistry Volume 2 - Modified Amino Acids, Organocatalysis and
Enzymes (Ed.: A. B. Hughes), Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 2009, pp. 281-338; As ligand: b) K. Micskei, T.
Patonaya, L. Caglioti, G. Pályi Chem. Biodivers. 2010, 7, 1660; As
building blocks: c) Amino Acids, Peptides and Proteins in Organic
Chemistry Volume 3 - Building Blocks, Catalysis and Coupling Chemistry
(Ed.: A. B. Hughes), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
Germany, 2009, pp. 1-200.
[19] The opposite prochiral face of the electrophile would be attacked but a
strong steric interaction between the aryl group of the catalyst 3a and the
phenyl group of the nitroalkene 2a could take place. This could be the
reason for the lower enantiomeric excess observed for an alkyl
substituent 4l (see Table 2).
[2]
[3]
a) A. E. Metz, M. C. Kozlowski J. Org. Chem. 2015, 80, 1; b) X. –H. Cai,
B. Xie Arkivoc 2014, 205; c) A. Perdiha, M. Sollner Dolenc Curr Org.
Chem. 2011, 15, 3750; d) C. Nájera, J. M. Sansano Chem. Rev., 2007,
107, 4584; e) G. Cardillo, L. Gentilucci, A. Tolomelli Mini-Rev. Med.
Chem. 2006, 6, 293.
a) Y. Huang, Q. Li, T. -L. Liu P. -F. Xu J. Org. Chem. 2009, 74, 1252 and
reference cited therein; b) M. Rowley, P. D. Leeson, B. J. Williams, K. W.
Moore, R. Baker, Tetrahedron 1992, 48, 3557; c) L. Cervo, A. Cocco, F.
Carnovali Psychopharmacology, 2004, 173, 124; d) D. Blanco-Ania, P.
This article is protected by copyright. All rights reserved.