Full Papers
12.0 Hz, 1H), 6.35 (dd, J=11.2, 11.2 Hz, 1H), 6.64 (d, J=16.0 Hz,
1H), 6.75 (d, J=8.2 Hz, 1H), 6.79 (d, J=7.6 Hz, 1H), 7.01 (ddd, J=
0.5, 11.3, 16.0 Hz, 1H), 7.16 ppm (t, J=8.0 Hz, 1H); 13C NMR
(100 MHz, CDCl3): d=168.3, 152.3, 137.9, 132.2, 132.1, 131.1, 129.9,
129.2, 127.2, 127.0, 121.3, 117.9, 93.2, 78.1, 69.0, 62.7, 60.4, 55.5,
29.9, 25.8, 25.0, 18.4, À4.0, À4.2 ppm; IR (neat, NaCl): n˜ =3438.92
(br), 2931, 2859, 1731, 1570, 1255, 1153, 1102, 1030 cmÀ1; HRMS
(ESI+) m/z calcd for C26H38NaO6Si [M+Na]+: 497.2330, found:
497.2337.
2H); 13C NMR (100 MHz, CD3OD): d=170.8, 155.3, 147.7, 142.1,
139.4, 134.5, 134.1, 132.9, 131.5, 131.2, 130.9, 130.83, 130.75, 130.5,
128.9, 128.5, 123.4, 120.3, 115.0, 78.6, 66.4, 28.6, 26.3 ppm; IR (neat,
NaCl): n˜ =3440 (br), 3060, 2950, 2854, 1730, 1640, 1457, 1115,
1070 cmÀ1; HRMS (ESI+) m/z calcd for C25H24NaO6S [M+Na]+:
475.1186, found: 475.1186.
2-((3S,4S,5E,9E)-14-((tert-Butyldimethylsilyl)oxy)-4-(methoxyme-
thoxy)-1-oxo-3,4,7,8-tetrahydro-1H-benzo[c][1]oxacyclododecin-
3-yl)acetaldehyde (47). To a solution of alcohol 20 (188 mg,
0.406 mmol) in CH2Cl2 (4.1 mL) was added Dess–Martin periodinane
(259 mg, 0.610 mmol) as a solid. The resultant mixture was stirred
at RT for 2.5 h before it was filtered. The filtrate was concentrated
by rotary evaporation. Purification by column chromatography
(20% EtOAc in hexanes) provided 165 mg (0.0358 mmol, 88%) of
(3S,4S,5Z,7Z,9E)-14-(tert-Butyldimethylsilyloxy)-4-(methoxyme-
thoxy)-3-((E)-4-(phenylsulfonyl)but-3-enyl)-3,4-dihydro-1H-
benzo[c][1]oxacyclododecin-1-one (45). To a flask containing alco-
hol 44 (10.0 mg, 0.0210 mmol) was added anhydrous CH2Cl2
(0.4 mL) and molecular sieves 4 (21 mg). The mixture was cooled
to 08C, and PDC (32.0 mg, 0.0842 mmol) was added in one portion.
The cooling bath was removed and the reaction was stirred at RT
for 1.5 h. The reaction mixture was diluted with hexanes (1 mL),
and then filtered through a silica gel plug and rinsed with 40%
EtOAc in hexanes (7 mL). The combined organic layer was concen-
trated in vacuo to afford an opaque oil of the corresponding alde-
hyde (6.0 mg). The crude aldehyde was used directly in the next
step without further purification.
1
aldehyde 47 as a colorless oil: H NMR (400 MHz, CDCl3): d=0.230
(s, 3H), 0.234 (s, 3H), 0.96 (s, 9H), 2.05–2.16 (m, 2H), 2.34–2.43 (m,
2H), 2.83 (ddd, J=17.3, 4.8, 2.1 Hz, 1H), 3.07 (ddd, J=17.3, 4.8,
2.1 Hz, 1H), 3.32 (s, 3H), 4.49–4.51 (m, 2H), 4.66 (d, J=6.7 Hz, 1H),
5.30 (dd, J=15.8, 6.3 Hz, 1H), 5.48–5.52 (m, 1H), 5.57 (dt, J=15.9,
6.2 Hz, 1H), 5.76 (dt, J=15.9, 6.2 Hz, 1H), 6.14 (d, J=15.9 Hz, 1H),
6.69 (d, J=8.2 Hz, 1H), 6.88 (d, J=7.6 Hz, 1H), 7.16 (t, J=8.0, 1H),
9.82 ppm (s, 1H).
To a solution of diethyl [(phenylsulfonyl)methyl]phosphonate 26
(6.7 mg, 0.023 mmol) in anhydrous THF (0.3 mL) was added 60%
NaH (1.0 mg, 0.026 mmol). The mixture was cooled to 08C, and
was stirred for 5 min. The aldehyde in THF (1.0 mL) was added
dropwise over 3 min. The mixture was stirred at 08C for 30 min,
and then diluted with saturated NH4Cl (4.0 mL) and phosphate
buffer pH 7 (4.0 mL). The crude mixture was extracted with EtOAc
(34 mL). The combined organic layer was washed with brine
(5.0 mL), dried over Na2SO4, and concentrated in vacuo. Purification
by column chromatography (30% EtOAc in hexanes) provided
6.0 mg (0.0098 mmol, 47%) of phenylsulfone 45 as an opaque oil:
a2D2 =À66 (c=0.30, CHCl3); 1H NMR (400 MHz, CDCl3): d=0.17 (s,
3H), 0.19 (s, 3H), 0.93 (s, 9H), 1.97 (m, 1H), 2.11 (m, 1H), 2.37 (m,
1H), 2.63 (m, 1H), 3.30 (s, 3H), 4.47 (d, J=6.5 Hz, 1H), 4.51 (d, J=
6.5 Hz, 1H), 4.59 (dd, J=2.9, 10.7 Hz, 1H), 5.29 (td, J=2.9, 10.4 Hz,
1H), 5.60 (dd, J=11.3, 11.3 Hz, 1H), 5.87 (dd, J=3.9, 11 Hz, 1H),
6.20 (dd, J=4.0, 11.84 Hz, 1H), 6.33 (d, J=11.3 Hz, 1H), 6.39 (d, J=
15.1 Hz, 1H), 6.64 (d, J=16.0 Hz, 1H), 6.74 (d, J=8.2 Hz, 1H), 6.79
(d, J=7.6 Hz, 1H), 6.95 (dd, J=11.5, 16.0 Hz, 1H), 7.05 (td, J=6.4,
15.1 Hz, 1H), 7.17 (t, J=8.0 Hz, 1H), 7.56 (m, 3H), 7.88 ppm (d, J=
7.2 Hz, 2H); 13C NMR (100 MHz, CDCl3): d=168.2, 152.2, 145.7,
140.6, 137.9, 133.3, 132.6, 132.2, 131.1, 130.9, 129.9, 129.4, 129.2,
127.6, 127.1, 126.4, 126.1, 121.3, 117.9, 93.1, 77.2, 68.7,55.5, 28.5,
26.4, 25.8, 18.4, À4.0, À4.1 ppm; IR (neat, NaCl): n˜ =2930, 1731,
1570, 1463, 1292, 1252, 1148, 1101, 1027 cmÀ1; HRMS (ESI+) m/z
calcd for C33H42NaO7SSi [M+Na]+: 633.2313, found: 633.2303.
(3S,4S,5E,9E)-14-((tert-Butyldimethylsilyl)oxy)-3-((E)-3-iodoallyl)-
4-(methoxymethoxy)-3,4,7,8-tetrahydro-1H-benzo[c][1]oxacyclo-
dodecin-1-one (49). To a suspension of CrCl2 (350 mg, 2.84 mmol)
in THF (1.7 mL) was added a solution of aldehyde 47 (109 mg,
0.237 mmol) and iodoform (373 mg, 0.947 mmol) in dioxane
(10.2 mL). The resultant mixture was stirred at RT for 22 h and then
quenched with brine and extracted with EtOAc. The combined or-
ganic layer was washed with brine, dried with MgSO4, and concen-
trated by rotary evaporation. Purification by column chromatogra-
phy (10% EtOAc in hexanes) provided 120 mg (0.205 mmol, 86%)
of iodide 49 as a colorless oil (9:1 ratio of E/Z vinyl iodide isomers
by 1H NMR): aD23 = +96.7 (c=1.19, CHCl3); 1H NMR (400 MHz,
CDCl3): d=0.237 (s, 3H), 0.244 (s, 3H), 0.98 (s, 9H), 2.12–2.21 (m,
2H), 2.32–2.42 (m, 2H), 2.52–2.59 (m, 1H), 2.70–2.78 (m, 1H), 3.41
(s, 3H), 4.40–4.42 (m, 1H), 4.58 (d, J=6.7, 1H), 4.70 (d, J=6.8 Hz,
1H), 5.04 (ddd, 8.5, 5.4, 3.1 Hz, 1H), 5.30 (dd, J=15.8, 5.6 Hz, 1H),
5.52 (dt, J=15.7, 6.1 Hz, 1H), 5.77 (dt, J=15.7, 6.1 Hz, 1H), 6.17 (d,
J=15.9 Hz, 1H), 6.25 (d, J=14.4 Hz, 1H), 6.60 (dt, J=14.4, 7.2 Hz,
1H), 6.68 (d, J=8.0 Hz, 1H), 6.86 (d, J=7.7 Hz, 1H), 7.14 ppm (t, J=
8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3): d=168.0, 152.0, 140.8,
137.6, 132.2, 131.9, 130.9, 129.8, 129.6, 125.3, 118.7, 117.0, 94.9,
78.5, 76.1, 75.4, 56.2, 36.5, 30.7, 30.0, 25.7, 18.2, À4.0, À4.4 ppm; IR
(neat, NaCl): n˜ =3064, 2928, 2856, 1730, 1574, 1466, 1290, 1255,
1107, 1036, 841 cmÀ1; HRMS (ESI+) m/z calcd for C26H37INaO5Si
[M+Na]+: 607.1347, found: 607.1357.
(3S,4S,5E,9E)-14-((tert-Butyldimethylsilyl)oxy)-4-hydroxy-3-((E)-3-
iodoallyl)-3,4,7,8-tetrahydro-1H-benzo[c][1]oxacyclododecin-1-
one (51). To a flask containing iodide 49 (117 mg, 0.200 mmol) was
added iPrOH (4 mL), and CBr4 (266 mg, 0.801 mmol) in one portion.
The mixture was heated at 758C for 2 h, cooled to RT and then
concentrated by rotary evaporation. Purification by column chro-
matography (15% EtOAc in hexanes) provided 93.1 mg
(0.172 mmol, 86%) of alcohol 51 as a colorless oil: a2D2 = +37.6 (c=
(3S,4S,5Z,7Z,9E)-4,14-Dihydroxy-3-((E)-4-(phenylsulfonyl)but-3-
enyl)-3,4-dihydro-1H-benzo[c][1]oxacyclododecin-1-one (46). To
a flask containing phenylsulfone 45 (6.0 mg, 0.0098 mmol) was
added 4m HCl in MeOH (0.7 mL). The mixture was stirred at RT for
211 h, and then concentrated in vacuo. Purification by column
chromatography (60% EtOAc in hexanes) provided 3.0 mg (68%)
of the desired analogue 46 as a colorless oil: a2D0 =À120 (c=0.15,
1
1
CHCl3); H NMR (400 MHz, CD3OD): d=1.87 (m, 1H), 2.03 (m, 1H),
1.22, CHCl3); H NMR (400 MHz, CDCl3): d=0.24 (3H), 0.25 (s, 3H),
2.38 (m, 1H), 2.48 (m, 1H), 4.48 (dd, J=3.6, 10.5 Hz, 1H), 5.07 (td,
J=2.7, 11.8 Hz, 1H), 5.72 (dd, J=11.3, 11.3 Hz, 1H), 5.81 (dd, J=4.0,
11.0 Hz, 1H), 5.96 (dd, J=4.0, 12.0 Hz, 1H), 6.23 (dd, J=11.4,
11.4 Hz, 1H), 6.53 (d, J=15.9 Hz, 1H), 6.61 (t, J=7.1 Hz, 3H), 6.88
(dd, J=11.5, 15.8 Hz, 1H), 6.95 (ddd, J=6.1, 8.5, 14.8 Hz, 1H), 7.05
(t, J=7.9 Hz, 1H), 7.51 (m, J=5.0 Hz, 3H), 7.77 ppm (m, J=2.2 Hz,
0.98 (s, 9H), 1.73 (br, 1H), 2.23–2.38 (m, 4H), 2.43–2.50 (m, 1H),
2.69–2.77 (m, 1H), 4.36 (s, 1H), 5.13 (ddd, J=9.9, 4.9, 2.0 Hz, 1H),
5.47 (s, 2H), 5.75 (dt, J=15.8, 5.8 Hz, 1H), 6.21 (d, J=16.1 Hz, 1H),
6.28 (d, J=14.4 Hz, 1H), 6.57 (ddd, J=15.0, 8.5, 6.8 Hz, 1H), 6.70 (d,
J=8.3 Hz, 1H), 6.87 (d, J=7.7 Hz, 1H), 7.16 ppm (t, J=8.0 Hz, 1H);
13C NMR (100 MHz, CDCl3): d=167.6, 152.2, 140.4, 137.3, 132.9,
ChemMedChem 2016, 11, 1600 – 1616
1613 ꢀ 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim