Journal of Agricultural and Food Chemistry
Article
antimicrobial activity of COS was significantly enhanced by the
kojic acid derivative of COS, and it increased with DS for
Staphylococcus aureus, Escherichia coli, Aspergillus niger, and
Saccharomyces cerevisiae. Thus, COS/KA may have potential as
an antimicrobial agent in food applications. However, more
biological studies are needed to understand their mechanisms
of action, to improve their activity by other modifications of
those molecules, and to determine their safety for food
applications.
(10) Aytemir, M. D.; Ozcelik, B. Synthesis and biological activities of
new Mannich bases of chlorokojic acid derivatives. Med. Chem. Res.
2
(
011, 20, 443−452.
11) Aytemir, M. D.; Ozcelik, B. A study of cytotoxicity of novel
chlorokojic acid derivatives with their antimicrobial and antiviral
activities. Eur. J. Med. Chem. 2010, 45, 4089−4095.
(12) Blumenthal, C. Z. Production of toxic metabolites in Aspergillus
niger, Aspergillus oryzae, and Trichoderma reesei: justification of
mycotoxin testing in food grade enzyme preparations derived from
the three fungi. Regul. Toxicol. Pharmacol. 2004, 39, 214−228.
(13) Higa, Y.; Kawabe, M.; Nabae, K.; Toda, Y.; Kitamoto, S.; Hara,
ASSOCIATED CONTENT
T.; Tanaka, N.; Kariya, K.; Takahashi, M. Kojic acid-absence of tumor-
initiating activity in rat liver, and of carcinogenic and photo-genotoxic
potential in mouse skin. J. Toxicol. Sci. 2007, 32, 143−159.
■
*
S
Supporting Information
UV−vis absorption spectra of COS, KA, and COS/KA1−3,
SEM image of COS and COS/KA1, and reaction conditions for
N-benzylidene COS with chlorokojic acid, DS, yield and
(
14) Xiong, X.; Pirrung, M. C. Modular synthesis of candidate indole-
based insulin mimics by Claisen rearrangement. Org. Lett. 2008, 10,
1151−1154.
(15) Burdock, G. A.; Soni, M. G.; Carabin, I. G. Evaluation of health
aspects of kojic acid in food. Regul. Toxicol. Pharmacol. 2001, 33, 80−
1
01.
(
16) Khamaruddin, N. H.; Basri, M.; Lian, G.; Salleh, A. B.; Abdul-
AUTHOR INFORMATION
■
Rahman, R.; Ariff, A.; Mohamad, R.; Awang, R. Enzymatic synthesis
and characterization of palm-based kojic acid ester. J. Oil Palm Res.
2008, 20, 461−469.
Corresponding Author
*
(
17) Lee, Y. S.; Park, J. H.; Kim, M. H.; Seo, S. H.; Kim, H. J.
Synthesis of tyrosinase inhibitory kojic acid derivative. Arch. Pharm.
006, 339, 111−114.
18) Marwaha, S. S.; Kaur, J.; Sodhi, G. S. Organomercury(II)
Funding
2
(
This research was financially supported by the Twelfth Five
Year National Science and Technology Plan of rural field
research mission contract (2011BAD23B00), and the Fund
Project for Transformation of Scientific and Technological
Achievements of Jiangsu Province (BA2009082).
complexes of kojic acid and maltol: synthesis, characterization, and
biological studies. J. Inorg. Biochem. 1994, 54, 67−74.
́ ́ ̌
(19) Uher, M.; Hudecova, D.; Brtko, J.; Dobias, J.; Kovac, J.;
̌
SturdíkE. Antifungal preparation. CS Patent 259592, 1989.
20) Cai, Q.; Gu, Z.; Chen, Y.; Han, W.; Fu, T.; Song, H.; Li, F.
(
Notes
Degradation of chitosan by an electrochemical process. Carbohydr.
Polym. 2010, 79, 783−785.
The authors declare no competing financial interest.
(
21) Sima, J.; Chochulova,
M.; Bradiakova,
complexes with kojic acid derivatives. Pol. J. Chem. 1993, 67, 1369−
374.
22) Fernandez-Megia, E.; Novoa-Carballal, R.; Quin
́ ́ ́
B.; Veverka, M.; Makanova, J.; Hajselova,
́
A. Efficiency of the photoreduction of iron (III)
ACKNOWLEDGMENTS
■
We thank the staff at our laboratory for the assistance they have
provided in this study.
1
(
̃
́
oa, E.; Riguera,
R. Optimal routine conditions for the determination of the degree of
1
REFERENCES
acetylation of chitosan by H-NMR. Carbohydr. Polym. 2005, 61, 155−
■
1
61.
(
1) Rinaudo, M. Chitin and chitosan: properties and applications.
Prog. Polym. Sci. 2006, 31, 603−632.
2) Jeon, Y. J.; Kim, S. K. Production of chitooligosaccharides using
an ultrafiltration membrane reactor and their antibacterial activity.
Carbohydr. Polym. 2000, 41, 133−141.
3) Xia, W.; Liu, P.; Zhang, J.; Chen, J. Biological activities of
chitosan and chitooligosaccharides. Food Hydrocolloids 2011, 25, 170−
79.
4) Xu, J.; Zhao, X.; Han, X.; Du, Y. Antifungal activity of
(23) Lavertu, M.; Xia, Z.; Serreqi, A.; Berrada, M.; Rodrigues, A.;
1
Wang, D.; Buschmann, M.; Gupta, A. A validated H NMR method for
the determination of the degree of deacetylation of chitosan. J. Pharm.
Biomed. Anal. 2003, 32, 1149−1158.
(
(24) Natalija, G.; Ricardas, M. Synthesis and study of water-soluble
(
chitosan-O-poly(ethylene glycol) graft copolymers. Eur. Polym. J. 2004,
0, 685−691.
25) Hong, J. H.; Choi, Y. H. Physico-chemical properties of protein-
4
(
1
(
oligochitosan against Phytophthora capsici and other plant pathogenic
fungi in vitro. Pestic. Biochem. Physiol. 2007, 87, 220−228.
bound polysaccharide from Agaricus blazei Murill prepared by
ultrafiltration and spray drying process. Int. J. Food Sci. Technol.
2007, 42, 1−8.
(
5) Kendra, D. F.; Hadwiger, L. A. Characterization of the smallest
chitosan oligomer that is maximally antifungal to Fusarium solani and
́
(26) Peniche, C.; Zaldivar, D.; Bulay, A.; Roman, J. S. Study of the
elicits pisatin formation in Pisum sativum. Exp. Mycol. 1984, 8, 276−
thermal degradation of poly(furfuryl methacrylate) by thermogravim-
etry. Polym. Degrad. Stab. 1993, 40, 287−295.
(27) Qin, C.; Du, Y.; Xiao, L.; Li, Z.; Gao, X. Enzymic preparation of
water-soluble chitosan and their antitumor activity. Int. J. Biol.
Macromol. 2002, 31, 111−117.
(28) Rhim, J. W.; Hong, S. I.; Park, H. M.; Ng, P. K. Preparation and
characterization of chitosan-based nanocomposite films with anti-
microbial activity. J. Agric. Food Chem. 2006, 54, 5814−5822.
(29) Rosenberg, M.; Kopelman, I. J.; Talmon, Y. A scanning electron
microscopy study of microencapsulation. J. Food Sci. 1985, 50, 139−
144.
(30) No, H. K.; Young Park, N.; Ho Lee, S.; Meyers, S. P.
Antibacterial activity of chitosans and chitosan oligomers with different
molecular weights. Int. J. Food Microbiol. 2002, 74, 65−72.
281.
(
6) Qin, C.; Zhou, B.; Zeng, L.; Zhang, Z.; Liu, Y.; Du, Y.; Xiao, L.
The physicochemical properties and antitumor activity of cellulase-
treated chitosan. Food Chem. 2004, 84, 107−115.
(
7) Jeon, Y. J.; Kamil, J. Y.; Shahidi, F. Chitosan as an edible invisible
film for quality preservation of herring and Atlantic cod. J. Agric. Food
Chem. 2002, 50, 5167−5178.
(
8) Kim, S.-K.; Rajapakse, N. Enzymatic production and biological
activities of chitosan oligosaccharides (COS): a review. Carbohydr.
Polym. 2005, 62, 357−368.
(
9) Can, Z.; Ya, D.; Yu, L.; Qi, P. Polymeric micelle systems of
hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl
chitosan derivatives. Colloids Surf. B: Biointerfaces 2007, 50, 192−199.
3
02
dx.doi.org/10.1021/jf404026f | J. Agric. Food Chem. 2014, 62, 297−303