Jisha et al.
JOCArticle
FIGURE 1. Structures of the dyads 1a,b and the model compounds 2 and 3 under investigation.
molecules that selectively bind to Cu2þ ions and signal the
event through sensitive and easily detectable outputs is highly
important.6 Of the various techniques, the optoelectronic
detection has several advantages, and the fluorescence-based
techniques, in particular, offer high sensitivity.1,7
wherein enhancement in the fluorescence intensity has been
observed upon complexation with Cu2þ ions.11 The low
sensitivity and the high order of interference by chemically
closely related metal ions has thus necessitated the design of
highly selective probes for Cu2þ ions.10g,12 In this context, we
synthesized two chimeric dyads 1a and 1b based on dansyl
and naphthalimide chromophores and the model com-
pounds 2 and 3 for comparison (Figure 1) and investigated
their photophysical properties on interactions with various
monovalent and divalent metal ions. We designed these
dyads because of the fact that their individual units have
been investigated as chemosensors13 and fluorescent labels14
and can, in principle, undergo intramolecular fluorescence
resonance energy transfer (FRET) and photoinduced elec-
tron transfer (PET) reactions.15 Our results demonstrate that
these dyads can interact selectively with Cu2þ ions as com-
pared to other metal ions and signal the binding event
through inhibition of FRET-mediated emission, thereby
indicating their potential use as sensitive fluorescence ratio-
metric probes for the selective recognition of Cu2þ ions.
Recently, the development of fluorescence ratiometric
probes for metal ions has attracted much attention since
they allow the measurement of emission intensities at two
different wavelengths.8 This method provides a built-in
correction for environmental effects (i.e., artifacts as a result
of probe concentration variations) as well as increases the
dynamic range of emission measurements.9 Since the sensi-
tivity and dynamic range of a ratiometric probe are con-
trolled by the ratio of emission intensities, the design of
probes that selectively interact with metal ions and show high
ratiometric signals has been challenging. In particular, ratio-
metric probes for Cu2þ ions is a challenge due to its inherent
paramagnetic nature, and hence, the complexation generally
results in quenching of the fluorescence intensity of the
probe.10 However, there were also a few examples reported
Results and Discussion
(6) (a) Kukrer, B.; Akkaya, E. U. Tetrahedron Lett. 1999, 40, 9125.
(b) Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197. (c) Kim, H. J.;
Hong, J.; Hong, A.; Ham, S.; Lee, J. H.; Kim, J. S. Org. Lett. 2008, 10, 1963.
(d) Martinez, R.; Zapata, F.; Caballero, A.; Espinosa, A.; Tarraga, A.;
Molina, P. Org. Lett. 2006, 8, 3235. (e) Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.;
Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J. Org. Chem. 2006, 71, 2881. (f) Li, Y.;
Cao, L.; Tian, He J. Org. Chem. 2006, 71, 8279. (g) Choi, J. K.; Kim, S. H.;
Yoon, J.; Lee, K.-H.; Bartsch, R. A.; Kim, J. S. J. Org. Chem. 2006, 71, 8011.
(h) Silveira, V. C. D.; Luz, J. S.; Oliveira, C. C.; Graziani, I.; Ciriolo, M. R.;
Ferreira, A. M. D. C. J. Inorg. Biochem. 2008, 102, 1090.
Synthesis and Photophysical Properties of the Dyads. Synth-
esis of the chimeric dyads 1a and 1b has been achieved in good
yields (60-65%) by the reaction of the corresponding N-
ω-alkylnaphthalimide with dansylchloride (Scheme 1), whereas
the model compounds 2 (90%) and 3 (50%) were synthesized
as per the reported procedure16,17 by the reaction of dansyl
(7) (a) Neelakandan, P. P.; Ramaiah, D. Angew. Chem., Int. Ed. 2008, 47,
8407. (b) Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Org. Lett. 2005, 7, 889.
(c) Neelakandan, P. P.; Hariharan, M.; Ramaiah, D. J. Am. Chem. Soc. 2006,
128, 11334. (d) Jisha, V. S.; Arun, K. T.; Hariharan, M.; Ramaiah, D.
J. Am. Chem. Soc. 2006, 128, 6024. (e) Ros-Lis, J. V.; Martinez-Manez, R.;
Rurack, K.; Sancenon, F.; Soto, J.; Spieles, M. Inorg. Chem. 2004, 43, 5183.
(f) Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J.
Angew. Chem., Int. Ed. 2005, 44, 4405. (g) Constable, E. C.; Martinez-Manez,
R.; Cargill Thompson, A. M. W.; Walker, J. V. J. Chem. Soc., Dalton Trans.
1994, 1585. (h) Arun, K. T.; Ramaiah, D. J. Phys. Chem. A 2005, 109, 5571.
(i) Kuruvilla, E.; Nandajan, P. C.; Schuster, G. B.; Ramaiah, D. Org. Lett.
2008, 10, 4295.
(11) (a) Ghosh, P.; Bharadwaj, P. K.; Mandal, S.; Sanjib, G. J. Am. Chem.
Soc. 1996, 118, 1553. (b) Yang, J.-S.; Lin, C.-S.; Hwang, C.-Y. Org. Lett.
2001, 3, 889. (c) Xie, J.; Menand, M.; Maisonneuve, S.; Metivier, R. J. Org.
Chem. 2007, 72, 5980. (d) Park, S. M.; Kim, M. H.; Choe, J.-I.; No, K. T.;
Chang, S.-K. J. Org. Chem. 2007, 72, 3550.
(12) (a) Kaur, S.; Kumar, S. Chem. Commun. 2002, 2840. (b) Royzen, M.;
Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005, 127, 1612. (c) Kim, S. H.;
Kim, J. S.; Park, S. M.; Chang, S.-K. Org. Lett. 2006, 8, 371. (d) Lin, W.;
Yuan, L.; Tan, W.; Feng, J.; Long, L. Chem.;Eur. J. 2009, 15, 1030. (e) Li,
Y.; Zheng, H.; Li, Y.; Wang, S.; Wu, Z.; Liu, P.; Gao, Z.; Liu, H.; Zhu, D. J.
ꢀ
(8) (a) Zhang, X.; Xiao, Y.; Qian, X. Angew. Chem., Int. Ed. 2008, 47,
8025. (b) Mello, J. V.; Finney, N. S. Angew. Chem., Int. Ed. 2001, 40, 1536.
(c) Takakusa, H.; Kikuchi, K.; Urano, Y.; Kojima, H.; Nagano, T. Chem.;
Eur. J. 2003, 9, 1479. (d) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2005,
127, 10464. (e) Lin, W.; Yuan, L.; Long, L.; Guo, C.; Feng, J. Adv. Funct.
Mater. 2008, 18, 2366. (f) Xu, Z.; Qian, X.; Cui, J. Org. Lett. 2005, 7, 3029.
(9) (a) Lewis, F. D.; Zhang, Y.; Letsinger, R. L. J. Am. Chem. Soc. 1997,
119, 5451. (b) Lou, J.; Hatton, T. A.; Laibinis, P. E. Anal. Chem. 1997, 69,
1262. (c) Reis e Sousa, A. T.; Castanheira, E. M. S.; Fedorov, A.; Martinho,
J. M. G. J. Phys. Chem. A 1998, 102, 6406. (d) Nohta, H.; Satozono, H.;
Koiso, K.; Yoshida, H.; Ishida, J.; Yamaguchi, M. Anal. Chem. 2000, 72,
4199. (e) Okamoto, A.; Ichiba, T.; Saito, I. J. Am. Chem. Soc. 2004, 126, 8364.
(10) (a) Varnes, A. V.; Dodson, R. B.; Whery, E. L. J. Am. Chem. Soc.
1972, 94, 946. (b) Kemlo, J. A.; Shepherd, T. M. Chem. Phys. Lett. 1977, 47,
158. (c) Rurack, K.; Resch, U.; Senoner, M.; Daehne, S. J. Fluoresc. 1993, 3,
141. (d) Torrado, A.; Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1998,
120, 609. (e) Yu, M.; Shi, M.; Chen, Z.; Li, F.; Li, X.; Gao, Y.; Xu, J.; Yang,
H.; Zhou, Z.; Yi, T.; Huang, C. Chem.;Eur. J. 2008, 14, 6892. (f) Li, G.-K.;
Xu, Z.-X.; Chen, C.-F.; Huang, Z.-T. Chem. Commun. 2008, 1774. (g) Wen,
Z.-C.; Yang, R.; He, H.; Jiang, Y.-B. Chem. Commun. 2006, 106. (h) Xiang,
Y.; Tong, A.; Jin, P.; Ju, Y. Org. Lett. 2006, 8, 2863.
Org. Chem. 2007, 72, 2878. (f) Zheng, Y.; Gattas-Asfura, K. M.; Konka, V.;
Leblanc, R. M. Chem. Commun. 2002, 2350. (g) Grandini, P.; Mancin, F.;
Tecilla, P.; Scrimin, P.; Tonellato, U. Angew. Chem., Int. Ed. 1999, 38, 3061.
(13) (a) Montalti, M.; Prodi, L.; Zaccheroni, N.; Falini, G. J. Am. Chem.
Soc. 2002, 124, 13540. (b) Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V.;
€
Gorka, M.; Vogtle, F. J. Am. Chem. Soc. 2002, 124, 6461. (c) Jiang, P.; Chen,
L.; Lin, J.; Liu, Q.; Ding, J.; Gao, X.; Guo, Z. Chem. Commun. 2002, 1424.
(d) Corradini, R.; Dossena, A.; Galaverna, G.; Marchelli, R.; Panagia, A.;
Sartor, G. J. Org. Chem. 1997, 62, 6283.
(14) (a) Daffy, L. M.; de Silva, A. P.; Gunaratne, H. Q. N.; Huber, C.;
Lynch, P. L. M.; Werner, T.; Wolfbeis, O. S. Chem.;Eur. J. 1998, 4, 1810.
(b) Gunnlaugsson, T.; Clive Lee, T.; Parkesh, R. Org. Biomol. Chem. 2003, 1,
3265. (c) Zhong, D.; Pal, S. K.; Zewail, A. H. ChemPhysChem. 2001, 2, 219.
(15) (a) Abad, S.; Kluciar, M.; Miranda, M. A.; Pischel, U. J. Org. Chem.
2005, 70, 10565. (b) Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S.
Org. Lett. 2008, 10, 213. (c) Battistuzzi, G. G.; Grandi, G.; Menabue, L.;
Pellacani, G. C.; Sola, M. J. Chem. Soc., Dalton Trans. 1985, 2363.
(16) (a) Ceroni, P.; Laghi, I.; Maestri, M.; Balzani, V.; Gestermann, S.;
Gorkab, M.; Vogtle, F. New. J. Chem. 2002, 26, 66.
(17) Pandey, S.; Azam, A.; Pandey, S.; Chawla, H. M. Org. Biomol.
Chem. 2009, 7, 269.
6668 J. Org. Chem. Vol. 74, No. 17, 2009